Abstract
Scanning electrochemical microscopy (SECM) is a type of scanning probe microscopy, which can not only provide the topographical information, but also offer the electrochemical properties of different samples. The interrelationship of physical and electrochemical properties of a sample can be searched at a high-resolution scale due to the introduction of ultramicroelectrode (UME). With the continuous development of modern nanotechnology, the SECM probe has been improved with drastically decreasing its size down to nanometer. Meanwhile, to evaluate and understand the electrochemical performance of various electrocatalysts for both oxygen and hydrogen reactions with high-efficiency is highly demanded in the research area of green new energy conversion and storage systems, such as regenerative fuel cells and rechargeable metal-air batteries. Therefore, this review will provide a snapshot in the preparations and developments for different types of nanoprobes of SECM. The recent advances in applications of nanoscale SECM in studies of electrocatalysts for both oxygen and hydrogen reactions are also summarized. Finally, some prospects for the future development of nanoscale SECM are discussed.
Graphical Abstract
Keywords
scanning electrochemical microscopy, nanoprobe, oxygen reaction, hydrogen reaction, fuel cells
Publication Date
2018-10-28
Online Available Date
2018-04-23
Revised Date
2018-02-23
Received Date
2018-01-28
Recommended Citation
Xing-xing CHEN.
Preparation of Nanoprobes and Their Possible Applications in Nanoscale Scanning Electrochemical Microscopy for Studying Electrocatalytic Oxygen and Hydrogen Reactions[J]. Journal of Electrochemistry,
2018
,
24(5): 497-510.
DOI: 10.13208/j.electrochem.180141
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol24/iss5/8
References
[1] Binnig G, Rohrer H. Scanning tunneling microscopy[J]. Helvetica Physica Acta, 1982, 55(6): 726-735.
[2] Pohl D W, Denk W, Lanz M. Optical stethoscopy image recording with resolution λ/20[J]. Applied Physics Letters, 1984, 44(7): 651-653.
[3] Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Physical Review Letters, 1986, 56(9): 930-933.
[4] Hansma P K, Drake B, Marti O, et al. The scanning ion-conductance microscope[J]. Science, 1989, 243(4891): 641-643.
[5] Bard A J, Fan F F, Kwak J, et al. Scanning electrochemical microscopy introduction and principal[J]. Analytical Chemistry, 1989, 61(2): 132-138.
[6] Wittstock G. Scanning electrochemical microscopy for analysis of functional material[J]. Optics & Optoelectronic Technology, 2012, 10(4): 6-11.
[7] Li B H(李保华), Ma Y(马燕), Huang L(黄蕾). Progress of scanning electrochemical microscopy and its application in the biological analysis[J]. Chemistry(化学通报), 2013, 76(2): 124-131.
[8] Du X J(杜晓静), Xu F(徐峰), Li F(李菲), et al. New application of scanning electrochemical microscopy in characterization of hydrogel microwell arrays[J]. Scientia Sinica Chimica (中国科学:化学), 2014, 44(11): 1814-1822
[9] Cao F H(曹发和), Xia Y(夏研), Liu W J(刘文娟), et al. Basic principles and applications of SECM in metal corrosion SECM[J]. Journal of Electrochemistry(电化学), 2013, 19(5): 393-401.
[10] Lin C J(林昌健), Li Y(李彦), Lin B(林斌), et al. Developments of scanning electrochemical probes and their applications in studying of localized corrosions[J]. Journal of Electrochemistry(电化学), 2009, 15(2): 121-128.
[11] Zhang Y(张贇), Wu X M(吴晓梅), Zeng X Q(曾小勤), et al. Application of scanning electrochemical microscopy in power sources[J]. Chinese Journal of Power Sources(电源技术), 2015, 39(5): 1129-1131.
[12] Chen X X(陈星星). Mini-review: Possible applications of scanning electrochemical microscopy (SECM) in characterizations of oxygen reduction reaction and oxygen evolution reaction[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 113-122.
[13] Xin S L(辛淑莉), Sun Y(孙瑶), Yuan D(袁丁), et al. Applications of scanning electrochemical microscoy in photoelectrochemistry[J]. Scientia Sinica(Chimica)(中国科学:化学), 2017, 47(9): 1085-1101.
[14] Wang Y J(王玉娇), Wang W(王玮), Feng P Y(冯平源), et al. Research progresses of the analytical applications of scanning electrochemical microscopy in Li-ion batteries[J]. Energy Storage Science and Technology(储能科学与技术),2017, 6(1): 1-10.
[15] Yu Y, Sun T, Mirkin M V. Toward more reliable measurements of electron-transfer kinetics at nanoelectrodes: Next approximation[J]. Analytical Chemistry, 2016, 88(23): 11758-11766.
[16] Velmurugan J, Sun P, Mirkin M V. Scanning electrochemical microscopy with gold nanotips: The effect of electrode material on electron transfer rates[J]. Journal of Physical Chemistry C, 2009, 113(1): 459-464.
[17] Li Y, Hu K K, Yu Y, et al. Direct electrochemical measurements of reactive oxygen and nitrogen species in nontransformed and metastatic human breast cells[J]. Journal of the American Chemical Society, 2017, 139(37): 13055-13062.
[18] Zhou J Y, Jiang D C, Chen H Y. Nanoelectrochemical architectures for high-spatial-resolution single cell analysis[J]. Science China-Chemistry, 2017, 60(10): 1277-1284.
[19] Kim J, Renault C, Nioradze N, et al. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy[J]. Journal of The American Chemical Society, 2016, 138(27): 8560-8568.
[20] Simpson B H, Rodriguez-Lopez J. Electrochemical imaging and redox interrogation of surface defects on operating SrTiO3 photoelectrodes[J]. Journal of the American Chemical Society, 2015, 137(47): 14865-14868.
[21] Wolbarsht M L, Macnichol E F, Wagner H G. Glass insulated platinum microelectrode[J]. Science, 1960, 132(3436): 1309-1310.
[22] Katemann B B, Schuhmann W. Fabrication and characterization of needle-type Pt-disk nanoelectrodes[J]. Electroanalysis, 2002, 14(14): 22-28.
[23] Li Y X, Bergman D, Zhang B. Preparation and electrochemical response of 1-3 nm Pt disk electrodes[J]. Analytical Chemistry, 2009, 81(13): 5496-5502.
[24] Shao Y, Mirkin M V, Fish G, et al. Nanometer-sized electrochemical sensors[J]. Analytical Chemistry, 1997, 69(8): 1627-1634.
[25] Liu Y Z, Li M N, Zhang F, et al. Development of Au disk nanoelectrode down to 3 nm in radius for detection of dopamine release from a single cell[J]. Analytical Chemistry, 2015, 87(11): 5531-5538.
[26] Noël J M, Velmurugan J, Gokme拶e E, et al. Fabrication, characterization, and chemical etching of Ag nanoelectrodes[J]. Journal of Solid State Electrochemistry, 2013, 17(2): 385-389.
[27] Zhang B, Galusha J, Shiozawa P G, et al. Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size[J]. Analytical Chemistry, 2007, 79(13): 4778-4787.
[28] Bonazza H L, Fernandez J L. An efficient method for fabrication of disk-shaped scanning electrochemical microscopy probes with small glass-sheath thicknesses[J]. Journal of Electroanalytical Chemistry, 2010, 650(1): 75-81.
[29] Etienne M, Moulin J P, Gourhand S. Accurate control of the electrode shape for high resolution shearforce regulated SECM[J]. Electrochimica Acta, 2013, 110(6): 16-21.
[30] Sun P, Mirkin M V. Scanning electrochemical microscopy with slightly recessed nanotips[J]. Analytical Chemistry, 2007, 79(15): 5809-5816.
[31] Bae J H, Yu Y, Mirkin M V. Recessed nanoelectrodes for nanogap voltammetry[J]. ChemElectroChem, 2016, 3(12): 2043-2047.
[32] Velmurugan J, Mirkin M V. Fabrication of nanoelectrodes and metal clusters by electrodeposition[J]. ChemPhysChem, 2010, 11(13): 3011-3017.
[33] Jena B K, Percival S J, Zhang B. Au disk nanoelectrode by electrochemical deposition in a nanopore[J]. Analytical Chemistry, 2010, 82(15): 6737-6743.
[34] Velmurugan J, Noël J M, Mirkin M V. Nucleation and growth of mercury on Pt nanoelectrodes at different overpotentials[J]. Chemical Science, 2014, 5(1): 189-194.
[35] Penner R M, Heben M J, Longin T L, et al. Fabrication and use of nanometer-sized electrodes in electrochemistry[J]. Science, 1990, 250(4984): 1118-1121.
[36] Nagahara L A, Thundat T, Lindsay S M. Preparation and characterization of STM tips for electrochemical studies[J]. Review of Scientific Instruments, 1989, 60(10): 3128-3130.
[37] Angle M R, Schaefer A T. Neuronal recordings with solid-conductor intracellular nanoelectrodes (SCINEs)[J]. Plos One, 2012, 7(8): e43194.
[38] Schulte A, Chow R H. A simple method for insulating carbon-fiber microelectrodes using anodic electrophoretic deposition of paint[J]. Analytical Chemistry, 1996, 68(17): 3054-3058.
[39] Singhal R, Orynbayeva Z, Sundaram R V K, et al. Multifunctional carbon-nanotube cellular endoscopes[J]. Nature Nanotechnology, 2011, 6(1): 57-64.
[40] Yum K, Cho H N, Hu J, et al. Individual nanotube-based needle nanoprobes for electrochemical studies in picoliter microenvironments[J]. ACS Nano, 2007, 1(5): 440-448.
[41] Zhao G, Giolando D M, Kirchhoff J R. Cheminform abstract: Fabrication of silica-coated carbon fiber ultramicroelectrodes by chemical vapor deposition[J]. Analytical Chemistry, 1995, 67(15): 2592-2598.
[42] Holt K B, Hu J P, Foord J S. Fabrication of boron-doped diamond ultramicroelectrodes for use in scanning electrochemical microscopy experiments[J]. Analytical Chemistry, 2007,79(6): 2556-2561.
[43] Li X, Majdi S, Dunevall J, et al. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes[J]. Angewante Chemie International Edition, 2015, 54(41): 11978-11982.
[44] Li Y T, Zhang S H, Wang L, et al. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses[J]. Angewante Chemie International Edition, 2014, 53(46): 12456-12460.
[45] Bach C E, Nichols R J, Beckmann W, et al. Effective insulation of scanning tunneling microscopy tips for electrochemical studies using an electropainting method[J]. Vida Rural, 1993, 140(140): 1281-1284.
[46] Sun P, Zhang Z, Guo J D, et al. Fabrication of nanometer-sized electrodes and tips for scanning electrochemical microscopy[J]. Analytical Chemistry, 2001, 73(21): 5346-5351.
[47] Watkins J J, Chen J, White H S, et al. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions[J]. Analytical Chemistry, 2003, 75(6): 3962-3971.
[48] Takahashi Y, Shevchuk A I, Novak P, et al. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces[J]. Angewante Chemie International Edition, 2011, 50(41): 9638-9642.
[49] Takahashi Y, Shevchuk A I, Novak P, et al. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(29): 11540-11545.
[50] Kim Y T, Scarnulis D M, Ewing A G. Carbon-ring electrodes with 1-μm tip diameter[J]. Analytical Chemistry, 1986, 58(8): 1782-1786.
[51] McNally M, Wong D K Y. An in vivo probe based on mechanically strong but structurally small carbon electrodes with an appreciable surface area[J]. Analytical Chemistry, 2001, 73(20): 4793-4800.
[52] Actis P, Tokar S, Clausmeyer J, et al. Electrochemical nanoprobes for single-cell analysis[J]. ACS Nano, 2014, 8(1): 875-884.
[53] Schrlau M G, Falls E M, Ziober B L, et al. Carbon nanopipettes for cell probes and intracellular injection[J]. Nanotechnology, 2008, 19(1): 15101.
[54] Vitol E A, Schrlau M G, Bhattacharyya S, et al. Effects of deposition conditions on the structure and chemical properties of carbon nanopipettes[J]. Chemical Vapor Deposition, 2009, 15(7/9): 204-208.
[55] Singhal R, Bhattacharyya S, Orynbayeva Z, et al. Small diameter carbon nanopipettes[J]. Nanotechnology, 2010, 21(1): 15304.
[56] Yu Y, Noël J M, Mirkin M V. Carbon pipette-based electrochemical nanosampler[J]. Analytical Chemistry, 2014, 86(7): 3365-3372.
[57] Rees H R, Anderson S E, Privman E, et al. Carbon nano-pipette electrodes for dopamine detection in drosophila[J]. Analytical Chemistry, 2015, 87(7): 3849-3855.
[58] Hu K K, Gao Y, Wang Y X, et al. Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes[J]. Journal of Solid State Electrochemistry, 2013, 17(12): 2971-2977.
[59] Zhu X Y, Qiao Y H, Zhang X, et al. Fabrication of metal nanoelectrodes by interfacial reactions[J]. Analytical Chemistry, 2014, 86(14): 7001-7008.
[60] Hao R, Zhang B. Nanopipette-based electroplated nanoelectrodes[J]. Analytical Chemistry, 2015, 88(1): 614-620.
[61] Wang F F, Wang W, He X, et al. Nanofabrication of the gold scanning probe for the STM-SECM coupling system with nanoscale spatial resolution[J]. Science China-Chemistry, 2017, 60(5): 649-655.
[62] Cai C, Tong Y, Mirkin M V. Probing rapid ion transfer across a nanoscopic liquid-liquid interface[J]. Journal of Physical Chemistry B, 2004, 108(46): 17872-17878.
[63] Morris C, Friedman A K, Baker L A. Applications of nanopipettes in the analytical sciences[J]. Analyst, 2010, 135(9): 2190-2202.
[64] Takahashi Y, Shevchuk A I, Novak P, et al. Simultaneous noncontact topography and electrochemical imaging by SECM/SICM featuring ion current feedback regulation[J]. Journal of the American Chemical Society, 2010, 132(29): 10118-10126.
[65] Kranz C. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques[J]. Analyst, 2014, 139(2): 336-352. [66] OConnell M A, Wain A J. Combined electrochemical-topographical imaging: A critical review[J]. Analytical Methods, 2015, 7(17): 6983-6999.
[67] Nadappuram B P, McKelvey K, Botros R A, et al. Fabrication and characterization of dual function nanoscale pH scanning ion conductance microscopy (SICM) probes for high resolution pH mapping[J]. Analytical Chemistry, 2013, 85(17): 8070-8074.
[68] OConnell M A, Wain A J. Mapping electroactivity at individual catalytic nanostructures using high-resolution scanning electrochemical-scanning ion conductance microscopy[J]. Analytical Chemistry, 2014, 86(24): 12100-12107.
[69] Sen M, Takahashi Y, Matsumae Y, et al. Improving the electrochemical imaging sensitivity of scanning electrochemical microscopy-scanning ion conductance microscopy by using electrochemical Pt deposition[J]. Analytical Chemistry, 2015, 87(6): 3484-3489.
[70] Clausmeyer J, Botz A, Oehl D, et al. The oxygen reduction reaction at the three-phase boundary: Nanoelectrodes modified with Ag nanoclusters[J]. Faraday Discussions, 2016, 193: 241-250.
[71] Actis P, Tokar S, Clausmeyer J, et al. Electrochemical nanoprobes for single-cell analysis[J]. ACS Nano, 2014, 8(1): 875-884.
[72] Yang C, Sun P. Fabrication and characterization of a dual submicrometer-sized electrode[J]. Analytical Chemistry, 2009, 81(17): 7496-7500.
[73] McKelvey K, Nadappuram B P, Actis P, et al. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM)[J]. Analytical Chemistry, 2013, 85(15): 7519-7526.
[74] Macpherson J V, Unwin P R. Combined scanning electrochemical-atomic force microscopy[J]. Analytical Chemistry, 2000, 72(2): 276-285.
[75] Kranz C, Friedbacher G, Mizaikoff B, et al. Integrating an ultramicroelectrode in an AFM cantilever: Combined technology for enhanced information[J]. Analytical Chemistry, 2001, 73(11): 2491-2500.
[76] Burt D P, Wilson N R, Weaver J M R, et al. Nanowire probes for high resolution combined scanning electrochemical microscopy - atomic force microscopy[J]. Nano Letters, 2005, 5(4): 639-643.
[77] Patil A V, Beker A F, Wiertz F G M, et al. Fabrication and characterization of polymer insulated carbon nanotube modified electrochemical nanoprobes[J]. Nanoscale, 2010, 2(5): 734-738.
[78] Wain A J, Cox D, Zhou S, et al. High-aspect ratio needle probes for combined scanning electrochemical microscopy-atomic force microscopy[J]. Electrochemistry Communications, 2011, 13(1): 78-81.
[79] Pust S E, Salomo M, Oesterschulze E, et al. Influence of electrode size and geometry on electrochemical experiments with combined SECM-SFM probes[J]. Nanotechnology, 2010, 21(1): 105709.
[80] Gullo M R, Frederix P L, Akiyama T, et al. Characterization of microfabricated probes for combined atomic force and high-resolution scanning electrochemical microscopy[J]. Analytical Chemistry, 2006, 78(15): 5436-5442.
[81] Avdic A, Lugstein A, Wu M, et al. Fabrication of coneshaped boron doped diamond and gold nanoelectrodes for AFM-SECM[J]. Nanotechnology, 2011, 22(14): 145306.
[82] Rodriguez R D, Anne A, Cambril E, et al. Optimized hand fabricated AFM probes for simultaneous topographical and electrochemical tapping mode imaging[J]. Ultramicroscopy, 2011, 111(8): 973-981.
[83] Wain A J, Pollard A J, Richter C. High-resolution electrochemical and topographical imaging using batch-fabricated cantilever probes[J]. Analytical Chemistry, 2014, 86(1): 5143-5149.
[84] Nellist M R, Chen Y K, Mark A, et al. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhension and nanoelectrical imaging[J]. Nanotechnology, 2017, 28(9): 095711.
[85] Lee E, Kim M, Seong J, et al. An L-shaped nanoprobe for scanning electrochemical microscopy-atomic force microscopy[J]. Physica Status Solidi-Rapid Research Letters, 2013, 7(6): 406-409.
[86] Li Y, Cox J T, Zhang B. Electrochemical responses and electrocatalysis at single Au nanoparticles[J]. Journal of The American Chemical Society, 2010, 132(9): 3047-3054.
[87] Yu Y, Gao Y, Hu K, et al. Electrochemistry and electrocatalysis at single gold nanoparticles attached to carbon nanoelectrodes[J]. ChemElectroChem, 2015, 2(1): 58-63.
[88] Kim J, Kim B K, Cho S K, et al. Tunneling ultramicroelectrode: Nanoelectrodes and nanoparticle collisions[J]. Journal of The American Chemical Society, 2014, 136(23): 8173-8176.
[89] OConnell M A, Lewis J R, Wain A J. Electrochemical imaging of hydrogen peroxide generation at individual gold nanoparticles[J]. Chemical Communications, 2015, 51(51): 10314-10317.
[90] Eckhard K, Chen X X, Turcu F, et al. Redox-competition mode of scanning electrochemical microscopy (SECM)[J]. Physical Chemistry Chemical Physics, 2006, 8(45): 5359-5365.
[91] Chen X X, Eckhard K, Zhou M, et al. Electrocatalytic activity of spots of electrodeposited fuel-cell catalysts on carbon nanotubes modified glassy carbon[J]. Analytical Chemistry, 2009, 81(18): 7597-7603.
[92] Fernandez J, Bard A J. Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation-substrate collection mode[J]. Analytical Chemistry, 2003, 75(13): 2967-2974.
[93] Fernandez J, Bard A J. Scanning electrochemical microscopy 50. Kinetic study of electrode reactions by the tip generation-substrate collection mode[J]. Analytical Chemistry, 2004, 76(8): 2281-2289.
[94] Ludwig M, Kranz C, Schuhmann W, et al. Topography feedback mechanism for the scanning electrochemical microscope based on hydrodynamic forces between tip and sample[J]. Review of Scientific Instruments, 1995, 66(4): 2857-2860.
[95] Nebel M, Eckhard K, Erichsen T, et al. 4D shearforce-based constant-distance mode scanning electrochemical microscopy[J]. Analytical Chemistry, 2010, 82(18): 7842-7848.
[96] Lazenby R A, McKelvey K, Unwin P R. Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM): Visualizing interfacial reactions and fluxes from surfaces to bulk solution[J]. Analytical Chemistry, 2013, 85(5): 2937-2944.
[97] Nebel M, Erichsen T, Schuhmann W. Constant-distance mode SECM as a tool to visualize local electrocatalytic activity of oxygen reduction catalysts[J]. Beilstein Journal of Nanotechnology, 2014, 5(1): 141-151.
[98] Botz A J R, Nebel M, Rincon R A, et al. Onset potential determination at gas-evolving catalysts by means of constant-distance mode positioning of nanoelectrodes[J]. Electrochimica Acta, 2015, 179: 38-44.
[99] Sun T, Yu Y, Zacher, et al. Scanning electrochemical microscopy of individual catalytic nanoparticles[J]. Angewante Chemie International Edition, 2014, 53(51): 14120-14123.
[100] Kim J, Renault, C, Nioradze N, et al. Nanometer scale scanning electrochemical microscopy instrumentation[J]. Analytical Chemistry, 2016, 88(20): 10284-10289.
[101] Cox J T, Zhang B. Nanoelectrodes: Recent advances and new directions[J]. Annual Review of Analytical Chemistry, 2012, 5(1): 253-272.
[102] Fan Y S, Han C, Zhang B. Recent advances in the development and application of nanoelectrodes[J]. Analyst, 2016, 141(19): 5474-5487.
[103] Chen S L, Liu Y W. Electrochemistry at nanometer-sized electrodes[J]. Physical Chemistry Chemical Physics, 2014, 16(2): 635-652.
[104] Oja S M, Fan Y, Armstrong C M, et al. Nanoscale electrochemistry revisited[J]. Analytical Chemistry, 2015, 88(1): 414-430.
[105] Wang Y X, Shan X N, Tao N J. Emerging tools for studying single entity electrochemistry[J]. Faraday Discussions, 2016, 193: 9-39.
[106] Li Y R, Ning X M, Ma Q L, et al. Recent advances in electrochemistry by scanning electrochemical microscopy[J]. TrAC-Trends in Analytical Chemistry, 2016, 80: 242-254.
[107] Zoski C G. Review-Advances in scanning electrochemical microscopy (SECM)[J]. Journal of The Electrochemical Society, 2016, 163(4): H3088-H3100.
[108] Kang M, Momotenko D, Page A, et al. Frontiers in nano-scale electrochemical imaging: Faster, multifunctional, and ultrasensitive[J]. Langmuir, 2016, 32(32): 7993-8008.
[109] Clausmeyer J, Schuhmann W. Nanoelectrodes: Applications in electrocatalysis, single-cell analysis and highresolution electrochemical imaging[J]. TrAC-Trends in Analytical Chemistry, 2016, 79: 46-59.
[110] Takahashi Y. Development of high-resolution scanning electrochemical microscopy for nanoscale topography and electrochemical simultaneous imaging[J]. Electrochemistry, 2016, 84(9): 662-666.
[111] Park H S, Jang J H. Applications of scanning electrochemical micrsocopy (SECM) coupled to atomic force microscopy with sub-micrometer spatial resolution to the development and discovery of electrocatalysts[J]. Journal of Electrochemical Science and Technology, 2016, 7(4): 316-326.
[112] Kai T H, Zoski C G, Bard A J. Scanning electrochemical microscopy at nanometer level[J]. Chemical Communications, 2018, 54(16): 1934-1947.
[113] Izquierdo J, Knittel P, Kranz C. Scanning electrochemical microscopy: An analytical perspective[J]. Analytical Bioanalytical Chemistry, 2018, 410(2): 307-314.
[114] Matsue T. Bioimaging with micro/nanoelectrode systems[J]. Analytical Sciences, 2013, 29(2): 171-179.
[115] Shen M, Qu Z Z, DesLaurier J, et al. Single synaptic observation of cholinergic neurotransmission on living neurons: Concentration and dynamics[J]. Journal of The American Chemical Society, 2018, 140(25): 7764-7768.