•  
  •  
 

Corresponding Author

Gong-quan SUN(gqsun@dicp.ac.cn);
Hai SUN(sunhai@dicp.ac.cn)

Abstract

Direct methanol fuel cells (DMFC) generally use oxygen as an oxidant. Contaminants such as sulfides and nitrides in the air can affect the performance of the DMFC. In this work, the effects of SO2 on the performance of DMFC were investigated and the mechanism of poisoning was analyzed, by means of constant current discharge curve, polarization performance curve, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In the CV scan, the permeated methanol was oxidized at a low potential to eliminate its effect on the SO2 poisoning behavior test. The results showed that the SO2 poisoning resulted in a decrease in the electrochemical activity surface area (ECSA) of the catalyst. Meanwhile, the EIS data indicated that the poisoning led to an increase in the charge transfer resistance of the oxygen reduction reaction (ORR). Therefore, the poison accelerated decay of the open circuit voltage and operating voltage of the DMFC, and decreased the peak power density. Further investigations of three recovery strategies, dry air purging and load-shifting I-V operations could only partially restore the performance of DMFC. However, CV scanning could accomplish the recovery more completely.

Graphical Abstract

Keywords

direct methanol fuel cell, sulfur dioxide, adsorption, recovery

Publication Date

2018-12-28

Online Available Date

2018-11-14

Revised Date

2018-11-13

Received Date

2018-10-10

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.