•  
  •  
 

Corresponding Author

Zhi-qing ZOU(zouzq@sari.ac.cn);
Hui YANG(yangh@sari.ac.cn)

Abstract

The development of non-precious metal catalysts for oxygen reduction reaction (ORR) is essential for large-scale application of proton exchange membrane fuel cells. Herein, we present the in situ formed Fe-N doped hollow carbon nanospheres linked by carbon nanotubes composite, synthesized by using ZIF-8 as sacrificed template to form polydopamine (PDA) hollow nanospheres, followed by complexing with FeCl3, high temperature heat-treatment and NH3-etching. ZIF-8 was gradually decomposed simultaneously with PDA coating due to the loss of Zn2+ grabbed by PDA. NH3 etching resulted in the improved surface area, while the reducibility of NH3 resulted in the formation of Fe4N nanoparticles, which benefits the ORR activity of the catalyst. The half-wave potential of the as-prepared of PDA-Fe/N/C-NH3 was 0.79 V, only 60 mV lower than that of commercial Pt/C. The stability and methanol tolerance of PDA-Fe/N/C-NH3 were even superior to that of commercial Pt/C, indicating the good potential of PDA-Fe/N/C-NH3 for the application of fuel cells.

Graphical Abstract

Keywords

non-precious metal catalyst, oxygen reduction reaction, polydopamine, NH3-etching, carbon nanotubes/hollow nanospheres composite

Publication Date

2018-12-28

Online Available Date

2018-09-26

Revised Date

2018-09-14

Received Date

2018-09-04

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.