Abstract
The limitation of catalyst layer for proton exchange membrane fuel cell (PEMFC) in cost, durability and performance constitutes the bottleneck for the commercialization of fuel cell vehicles. Electrospun catalyst layer, with high catalyst utilization, increased triple phase boundary (TPB) and triple phase channel (TPC), has been developed by many researchers. This paper reviews the research progress in the electrospun catalyst layer for PEMFC, combined with the author’s work. Firstly, the development progress of catalyst layer is summarized, and the catalyst layer is classified and analyzed based on its fabrication method and structure character. Next, the fabrication process, physical property characterization, electrochemical performance analysis and durability characterization of the electrospun nanofiber catalyst layer are described. Finally, further develoment tendency in catalyst layer for PEMFC is viewed by comparion of three kinds of catalyst layers from the viewpoints of TPB, TPC and mass production. Future research topics are discussed
Graphical Abstract
Keywords
proton exchange membrane fuel cell, catalyst layer, electrospinning, triple-phase boundary, triple-phase channel
Publication Date
2018-12-28
Online Available Date
2018-11-06
Revised Date
2018-10-22
Received Date
2018-09-17
Recommended Citation
Yong LIU, Han DING, De-chun SI, Jie PENG, Jian-bo ZHANG.
A Review of Proton Exchange Membrane Fuel Cell Catalyst Layer by Electrospinning[J]. Journal of Electrochemistry,
2018
,
24(6): 639-654.
DOI: 10.13208/j.electrochem.180849
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol24/iss6/7
References
[1] Ouyang M G(欧阳明高). Technology strategy and R&D progress of automotive new energy and powertrain[J].Transactions of CSICE(内燃机学报), 2008(s1): 107-114.
[2] Wang C(王诚), Zhao B(赵波), Zhang J B(张剑波). Progress of membrane electrode assembly technology for proton exchange membrane fuel cell[J]. Science & Technology Review(科技导报), 2016, 34(6): 62-68.
[3] Ohma A, Mashio T, Sato K, et al. Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan[J]. Electrochimica Acta, 2011, 56(28): 10832-10841.
[4] Huang J, Li Z, Zhang J B. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer[J]. Frontiers in Energy, 2017, 11(3): 334-364.
[5] Jiang S F(蒋尚峰), Yi B L(衣宝廉). Progress of order-structured membrane electrode assembly[J]. Journal of electrochemistry(电化学), 2016, 22(3): 213-218.
[6] Cho Y H, Park H S, Cho Y H, et al. Effect of platinum amount in carbon supported platinum catalyst on performance of polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2007, 172(1): 89-93.
[7] Litster S, Mclean G. PEM fuel cell electrodes[J]. Journal of Power Sources, 2004, 130(1): 61-76.
[8] Ticianelli E A. Methods to advance technology of proton-exchange membrane fuel-cells[J]. Journal of The Electrochemical Society, 1988, 135(9): 2209-2214.
[9] Paganin V A, Ticianelli E A, Gonzalez E R. Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells[J]. Journal of Applied Electrochemistry, 1996, 26(3): 297-304.
[10] OHayre R, Lee S J, Cha S W, et al. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading[J]. Journal of Power Sources, 2002, 109(2): 483-493.
[11] Fofana D, Hamelin J, Bénard P. Modelling and experimental validation of high performance low platinum multilayer cathode for polymer electrolyte membrane fuel cells (PEMFCs)[J]. International Journal of Hydrogen Energy, 2013, 38(24): 10050-10062.
[12] Debe M K, Schmoeckel A, Hendricks S, et al. Durability aspects of nanostructured thin film catalysts for PEM fuel cells[J]. ECS Transactions, 2006, 1(8): 51-66.
[13] Tian Z Q, Lim S H, Poh C K, et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells[J]. Advanced Energy Materials, 2011, 1(6): 1205-1214.
[14] Park J H, Ju Y W, Park S H, et al. Effects of electrospun polyacrylonitrile-based carbon nanofibers as catalyst support in PEMFC[J]. Journal of Applied Electrochemistry, 2009, 39(8): 1229-1236.
[15] Zhang W, Brodt M W, Pintauro P N. Nanofiber cathodes for low and high humidity hydrogen fuel cell operation[J]. ECS Transactions, 2011, 41(1): 891-899.
[16] Si D, Zhang S, Huang J, et al. Electrochemical characterization of pre-conditioning process of electrospun nanofiber electrodes in polymer electrolyte fuel cells[J]. Fuel Cells, 2018, 18(5): 576-585.
[17] Lu Y X, Du S F, Steinberger-Wilckens R. One dimensional nanostructured electrocatalyst for polymer electrolyte membrane fuel cellA review[J]. Applied Catalysis B: Environmental, 2016, 199: 292-314.
[18] van der Vliet D F, Wang C, Tripkovic D, et al. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology[J]. Nature Materials, 2012, 11(12): 1051-1058.
[19] Zhang S S, Yuan X Z, Hin J N C, et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 194(2): 588-600.
[20] Brodt M, Wycisk R, Pintauro P N. Nanofiber electrodes with low platinum loading for high power hydrogen/air PEM fuel cells[J]. Journal of The Electrochemical Society, 2013, 160(8): F744-F749.
[21] Park Y C, Tokiwa H, Kakinuma K, et al. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells[J]. Journal of Power Sources, 2016, 315:179-191.
[22] Debe M K. Nanostructured thin film electrocatalysts for PEM fuel cells - A tutorial on the fundamental characteristics and practical properties of NSTF catalysts[M]//Editors. Zawodzinski T, Mukerjee S, Strasser P. Tutorials on Electrocatalysis in Low Temperature Fuel Cells, ECS Transactions, 2012, 45(2): 47-68.
[23] Zeng Y, Shao Z, Zhang H, et al. Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells[J]. Nano Energy, 2017, 34: 344-355.
[24] Pintauro P N. Electrospun nanofiber cathode for hydrogen/air fuel cells[C]//ECS 220th ECS Meeting, Boston, October 9-14, 2011.
[25] Brodt M, Han T, Dale N, et al. Fabrication, in-situ performance, and durability of nanofiber fuel cell electrodes[J]. Journal of The Electrochemical Society, 2015, 162(1): F84-F91.
[26] Zhang W, Pintauro P N. High-performance nanofiber fuel cell electrodes[J]. Chemsuschem, 2011, 4(12):1753-1757.
[27] Slack J J, Wycisk R, Dale N, et al. Electrospun nanofiber fuel cell MEA cathodes with PtCo/C catalyst[J]. ECS Transactions, 2017, 80(8): 829-837.
[28] Brodt M, Wycisk R, Dale N, et al. Power output and durability of electrospun fuel cell fiber cathodes with PVDF and Nafion/PVDF binders[J]. Journal of The Electrochemical Society, 2016, 163(5): F401-F410.
[29] Brodt M, Wycisk R, Pintauro P N, et al. Nanofiber fuel cell electrodes I. Fabrication and performance with commercial Pt/C catalysts[C]//ECS 220th ECS Meeting, San Francisco, California, October 27 - November 1, 2013.
[30] Han T, Dale N, Adjemian K, et al. Nanofiber fuel cell electrodes II. In-situ performance and durability studies[C]//ECS 220th ECS Meeting, San Francisco, California, October 27-November 1, 2013: F84-F91.
[31] Hong S J, Hou M, Xiao Y, et al. Investigation of high-per-formance nanofiber cathode with ultralow platinum for PEM fuel cells[J]. Energy Technology, 2017, 5(8): 1457-1463.
[32] Hong S J, Hou M, Zeng Y C, et al. High-performance low-platinum electrode for proton exchange membrane fuel cells: Pulse electrodeposition of Pt on Pd/C nanofiber mat[J]. ChemElectroChem, 2017, 4(5): 1007-1010.
[33] Hong S J, Hou M, Zhang H J, et al. A high-performance PEM fuel cell with ultralow platinum electrode via electrospinning and underpotential deposition[J]. Electro-
chimica Acta, 2017, 245: 395-401.
[34] Cavaliere S, Subianto S, Savych I, et al. Dopant-driven nanostructured loose-tube SnO2 architectures: Alternative electrocatalyst supports for proton exchange membrane fuel cells[J]. Journal of Physical Chemistry C, 2013, 117(36): 18298-18307.
[35] Savych I, Subianto S, Nabil Y, et al. Negligible degradation upon in situ voltage cycling of a PEMFC using an electrospun niobium-doped tin oxide supported Pt cathode[J]. Physical Chemistry Chemical Physics, 2015, 17(26): 16970-16976.
[36] Cavaliere S, Jiménez-Morales I, Ercolano G, et al. Highly stable PEMFC electrodes based on electrospun antimony-doped SnO2[J]. ChemElectroChem, 2016, 2(12): 1966-1973.
[37] Nabil Y, Cavaliere S, Harkness I A, et al. Novel niobium carbide/carbon porous nanotube electrocatalyst supports for proton exchange membrane fuel cell cathodes[J]. Journal of Power Sources, 2017, 363: 20-26.
[38] Lee J, Yoo J M, Ye Y, et al. Development of highly stable and mass transfer-enhanced cathode catalysts: Support-free electrospun intermetallic FePt nanotubes for polymer electrolyte membrane fuel cells[J]. Advanced Energy Materials, 2015, 5(11): 1402093.
[39] Wang X H, Richey F W, Wujcik K H, et al. Ultra-low platinum loadings in polymer electrolyte membrane fuel cell electrodes fabricated via, simultaneous electrospinning/electrospraying method[J]. Journal of Power Sources, 2014, 264: 42-48.
[40] Wang X H, Richey F W, Wujcik K H, et al. Effect of polytetrafluoroethylene on ultra-low platinum loaded electrospun/electrosprayed electrodes in proton exchange membrane fuel cells[J]. Electrochimica Acta, 2014, 139(26): 217-224.
[41] Reneker D H, Yarin A L, Hao F, et al. Bending instability of electrically charged liquid jets of polymer, solutions in electrospinning[J]. Journal of Applied Physics, 2000, 87(9): 4531-4547.
[42] Levitt A S, Vallett R, Dion G, et al. Effect of electrospinning processing variables on polyacrylonitrile nanoyarns[J]. Journal of Applied Polymer Science, 2018, 135(25): 46404.
[43] Ding B(丁彬), Yu J Y(俞建勇). Electrospinning and nanofibers[M]. China Textile Publishing House(中国纺织出版社), 2011: 26-59.
[44] Sener A G, Altay A S, Altay F. Effect of voltage on morphology of electrospun nanofibers[C]//International conference on electrical and electronics engineering, December 1-4, 2011, Bursa, Turkey. IEEE, 2011: I-324-I-328.
[45] Zargham S, Bazgir S, Tavakoli A, et al. The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber[J]. Journal of Engineered Fabrics & Fibers, 2013, 7(4): 42-49.
[46] Hekmati A H, Rashidi A, Ghazisaeidi R, et al. Effect of needle length, electrospinning distance, and solution concentration on morphological properties of polyamide-6 electrospun nanowebs[J]. Textile Research Journal, 2013, 83(14): 1452-1466.
[47] Chan S, Jankovic J, Susac D, et al. Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: Structure and performance[J]. Journal of Power Sources, 2018, 392(16): 239-250.
[48] Chan S, Jankovic J, Susac D, et al. Electrospun carbon nanofiber catalyst layersfor polymer electrolyte membrane fuel cells: fabrication and optimization[J]. Journal of Materials Science, 53(16): 11633-11647.
[49] Ohma A, Shinohara K, Iiyama A, et al. Membrane and catalyst performance targets for automotive fuel cells by FCCJ Membrane, Catalyst, MEA WG[C]//ECS 220th ECS meeting, Boston, October 9-14, 2011: 775-784.
[50] Zhang G, Shao Z G, Lu W, et al. Core-shell Pt modified Pd/C as an active and durable electrocatalyst for the oxygen reduction reaction in PEMFCs[J]. Applied Catalysis B Environmental, 2013, 132(12): 183-194.
[51] Huang J, Zhang J B. Theory of impedance response of porous electrodes: simplifications, inhomogeneities, non-stationarities and applications[J]. Journal of The Electrochemical Society, 2016, 163(9): A1983-A2000.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons