Abstract
All-solid-state lithium batteries have attracted much attention for their high energy density and good safety. To increase their efficiency and prolong their service life, it is necessary to achieve high ion conductivity at the electrode/electrolyte interface and in the electrolyte, as well as to eliminate dendrites growth in the battery. Based on the critical requirements outlined above, this paper discusses the applications of advanced imaging technologies in relevant studies. Recent progresses in investigations of all-solid-state lithium batteries by imaging techniques including electron microscopy, scanning probe microscopy, X-ray tomography, magnetic resonance imaging and optical microscopy are summarized.
Graphical Abstract
Keywords
lithium batteries, all solid-state, imaging, dendrite, interface
Publication Date
2019-02-28
Online Available Date
2018-07-23
Revised Date
2018-07-10
Received Date
2018-06-19
Recommended Citation
Yi-bo ZHAO, Hui-hui LIU, Song-liang CHEN, Shou-hang BO.
Applications of Advanced Imaging Technologies for Critical Issues of All-Solid-State Lithium Battery Studies[J]. Journal of Electrochemistry,
2019
,
25(1): 17-30.
DOI: 10.13208/j.electrochem.180545
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol25/iss1/2
References
[1] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2015, 22(3): 587-603.
[2] Monroe C, Newman J. The impact of elasctic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of The Electrochemical Society, 2005, 152(2): A396-A404.
[3] Ren Y Y, Shen Y, Lin Y H, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochemistry Communications, 2015, 57: 27-30.
[4] Aboulaich A, Bouchet R, Delaizir G, et al. A new approach to develop safe all-inorganic monolithic Li-ion batteries[J]. Advanced Energy Materials, 2011, 1(2): 179-183.
[5] Ito Y, Yamakawa S, Hayashi A, et al. Effects of the microstructure of solid-electrolyte-coated LiCoO2 on its discharge properties in all-solid-state lithium batteries[J]. Journal of Materials Chemistry A,, 2017, 5(21): 10658-10668.
[6] Trevey J E, Stoldt C R, Lee S H. High power nanocomposite TiS2 cathodes for all-solid-state lithium batteries[J]. Journal of The Electrochemical Society, 2011, 158(12): A1282-A1289.
[7] Nam Y J, Oh D Y, Jung S H, et al. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes[J]. Journal of Power Sources, 2018, 375: 93-101.
[8] Bai P, Li J, Brushett F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy and Environmental Science, 2016, 9(10): 3221-3229.
[9] Zhang W Q, Nie J H, Li F, et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane[J]. Nano Energy, 2018, 45: 413-419.
[10] Cheng L, Chen W, Kunz M, et al. Effect of surface microstructure on electrochemical performance of garnet solid electrolyte[J]. ACS Applied Materials and Interfaces, 2015, 7(3): 2073-2081.
[11] Wang B, Bates J B, Hart F X, et al. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes[J]. Cheminform, 1997, 28(6): 3203-3213.
[12] Hovington P, Lagace M, Guerfi A, et al. New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO4 versus nano Li1.2V3O8[J]. Nano Letters, 2015, 15(4): 2671-2678.
[13] Li D Z, Ma Z G, Xu J, et al. High temperature property of all-solid-state thin film lithium battery using LiPON electrolyte[J]. Materials Letters, 2014, 134(7): 237-239.
[14] Iriyama Y, Yada C, Abe T, et al. A new kind of all-solid-state thin-film-type lithium-ion battery developed by applying a D.C. high voltage[J]. Electrochemistry Communications, 2016, 8(8): 1287-1291.
[15] Bate J B, Dudney N J, Neudecker B, et al. Thin-film lithium and lithium-ion batteries[J]. Solid State Ionics, 2000, 135: 33-45.
[16] Li Y T, Zhou W D, Chen X, et al. Mastering the interface for advanced all-solid-state lithium rechargeable batteries[J]. Proceedings of the National Academy of Science, 2016, 113(47): 13313-13317.
[17] Fu K K, Gong Y H, Liu B Y, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): e1601659.
[18] Brissot C, Rosso M, Chazalviel J N, et al. In situ study of dendritic growth in lithium PEO-salt lithium cells[J]. Electrochimica Acta, 1998, 43(10-11): 1569-1574.
[19] Duan H, Yin Y X, Shi Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. Journal of the American Chemical Society, 2018, 140(1): 82-85.
[20] Wang C W, Gong Y H, Dai J Q, et al. In situ neutron depth profiling of lithium metal-garnet interfaces for solid state batteries[J]. Journal of the American Chemical Society, 2017, 139(40): 14257-14264.
[21] Eshetu G G, Judez X, Li C, et al. Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2017, 56(48): 15368-15372.
[22] Ren Y Y, Shen Y, Lin Y H, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochemistry Communications, 2015, 57: 27-30.
[23] Sagane F, Shimokawa R, Sano H, et al. In-situ scanning electron microscopy observation of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface[J]. Journal of Power Sources, 2013, 225: 245-250.
[24] Nagao M, Hayashi A, Tatsumisago M, et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte[J]. Physical Chemistry Chemical Physics, 2013, 15(42): 18600-18606.
[25] Dolle M, Sannier L, Beaudoin B, Trentin M, et al. Live scanning electron microscope observation of dendritic growth in lithium/polymer cells[J]. Electrochemical and Solid-State Letters, 2002, 5(12): A286-A289.
[26] Li L, Basu S, Wang Y P, et al. Self-heating-induced healing of lithium dendrites[J]. Science, 2018, 359(6383): 1513-1516.
[27] Wang Z Y, Santhanagopalan D, Zhang W, et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters, 2016, 16(6): 3760-3767.
[28] Santhanagopalan D, Qian D, McGilvray T, et al. Interface limited lithium transport in solid-state batteries[J]. Journal of Physical Chemistry Letters, 2014, 5(2): 298-303.
[29] Brazier A, Dupont L, Dantras-Laffont L, et al. First crosssection observation of an all solid-state lithium-ion nano battery by transmission electron microscopy[J].Chemistry of Materials, 2008, 20(6): 2352-2359.
[30] Ihlefeld J F, Clem P G, Doyle B L, et al. Fast lithium-ion conducting thin-film electrolytes integrated directly on flexible substrates for high-power solid-state batteries[J]. Advanced Materials, 2011, 23(47): 5663-5667.
[31] Wang Z, Lee J Z, Xin H L, et al. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries[J]. Journal of Power Sources, 2016, 324: 342-348.
[32] Liu S Y, Xie J, Su Q M, et al. Understanding Li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery[J]. Nano Energy, 2014, 8(6): 84-94.
[33] Zhang Y, Lai J Y, Gong Y D, et al. A safe high-performance all-solid-state lithium-vanadium battery with a freestanding V2O5 nanowire composite paper cathode[J]. Journal of American Chemistry Society: Applied Materials & Interfaces, 2016, 8(50): 34309-34316.
[34] Hayashi A, Nishio Y, Kitaura H, et al. Novel technique to form electrode-electrolyte nanointerface in all-solid-state rechargeable lithium batteries[J]. Electrochemistry Communications, 2008, 10(12): 1860-1863.
[35] Sun C W, Liu J, Gong Y D, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386.
[36] Kitaura H, Hayashi A, Ohtomo T, et al. Fabrication of electrode-electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes[J]. Journal of Materials Chemistry, 2011, 21(1): 118-124.
[37] Zhu J, Feng J K, Lu L, et al. In situ study of topography, phase and volume changes of titanium dioxide anode in all-solid-state thin film lithium-ion battery by biased scanning probe[J]. Journal of Power Sources, 2012, 197(1): 224-230.
[38] Masuda H, Ishida N, Ogata Y, et al. Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy[J]. Nanoscale, 2017, 9(2): 893-898.
[39] Harry K J, Hallinan D T, Parkinson D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1): 69-73.
[40] Chien P H, Feng X Y, Tang M X, et al. Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI[J]. Journal of Physical Chemistry Letters, 2018, 9(8): 1990-1998.
[41] Romanenko K, Jin L Y, Howlett P, et al. In situ MRI of operating solid-state lithium metal cells based on ionic plastic crystal electrolytes[J]. Chemistry of Materials, 2016, 28(8): 2844-2851.
[42] Brissot C, Rosso M, Chazalviel J N, et al. Dendritic growth mechanisms in lithium polymer cells[J]. Journal of Power Sources, 1999, 81: 925-929.
[43] Porz L, Swamy T, Sheldon B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): 1701003.
[44] Zhang J X, Zhao N, Zhang M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454.
[45] Kim K H, Iriyama Y, Yamamoto K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery[J]. Journal of Power Sources, 2011, 196(2): 764-767.
[46] Hsieh A G, Bhadra S, Hertzberg B J, et al. Electrochemical-acoustic time of flight: In operando correlation of physical dynamics with battery charge and health[J]. Environment and Environmental Science, 2015, 8(5): 1569-1577.
[47] Bai P, Li J, Brushett F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy and Environmental Science, 2016, 9(10): 3221-3229.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons