•  
  •  
 

Corresponding Author

Zhen-yu LIN(zylin@fzu.edu.cn)

Abstract

Electrochemiluminescence (ECL) has broad application in the fields of environmental monitoring and biological analysis due to its intrinsic advantages such as excellent versatility, good detection sensitivity, and high specificity. The intensity of ECL can be influenced by temperature variation in the ECL quantum efficiency and the rate of electrochemical reaction. However, traditional temperature control is commonly realized through bulk solutions heating, which is complicated and unfavorable for detection when the volatile and thermally unstable materials existed. In order to address these problems, electrically heated electrodes are used to adjust the temperature desired. The major character of this technique lies in the heating electrode up, while leaving the bulk solution at ambient temperature, which promotes the performance of the sensor by affecting the thermodynamic and kinetic parameters of the reaction, and further improves the sensitivity of the ECL detection. Moreover, the background signal, and the volatile and thermally unstable substances that are susceptible to temperature will not be affected. The contamination on the surface of the electrode can also be easily removed by electrical heating, thereby the reproducibility of ECL sensor is improved. As a whole, this article aims at reviewing the research progress of ECL sensors based on the electrically heated electrode in the analysis and detection of target molecules, summing up the main problems in the practical determination, and providing an outlook in the future development trend of this technology.

Graphical Abstract

Keywords

electrochemiluminescence, electrically heated electrode, sensor

Publication Date

2019-04-28

Online Available Date

2019-04-24

Revised Date

2019-01-07

Received Date

2018-11-20

References

[1] Miao W J. Electrogenerated chemiluminescence and its biorelated applications[J]. Chemical Reviews, 2008, 108(7): 2506-2553.
[2] Li L L, Chen Y, Zhu J J. Recent advances in electrochemiluminescence analysis[J]. Analytical Chemistry, 2017, 89(1): 358-371.
[3] Wang Y F(王艳凤), Luo D(罗荻), Shan D L(陕多亮), et al. Cathodic electrochemiluminescence of meso-tetra(4-sulfophenyl)porphyrin/potassium peroxydisulfate system[J].
Journal of Electrochemistry (电化学), 2017, 23(3): 307-315.
[4] Zhou Z Y(周镇宇), Xu L R(许林茹), Su B(苏彬). Electrochemiluminescence imaging focusing: Array analysis and visualization of latent fingerprints[J]. Journal of Electrochemistry(电化学), 2014, 20(6): 506-514.
[5] Wallace W L, Bard A J. Electrogenerated chemiluminescence. 35. Temperature dependence of the ECL efficiency of Ru(bpy)32+ in acetonitrile and evidence for very high excited state yields from electron transfer reactions[J]. Journal of Physical Chemistry, 1979, 83(10): 1350-1357.
[6] Wang X F, Zhou Y, Xu J J, et al. Signal-on electrochemiluminescence biosensors based on CdS-Carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine[J]. Advanced Functional Materials, 2009, 19(9): 1444-1450.
[7] Lin Z Y, Chen J H, Chen G N. An ECL biosensor for glucose based on carbon-nanotube/Nafion film modified glass carbon electrode[J]. Electrochimica Acta, 2008, 53(5): 2396-
2401.
[8] Wang H Y, Zhang F Q, Tan Z A, et al. Greatly enhanced electrochemiluminescence of CdS nanocrystals upon heating in the presence of ammonia[J]. Electrochemistry Communications, 2010, 12(5): 650-652.
[9] Li H D, Sentic M, Ravaine V, et al. Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films[J]. Physical Chemistry Chemical Physics, 2016, 18(48): 32697-32702.
[10] Harima Y, Aoyagui S. Electrode potential relaxation following a rapid change of temperature[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976, 69(3): 419-422.
[11] Ishikawa T, Okamoto G. Potentiostatic response of passive metals to the rate of temperature change[J]. Electrochimica Acta, 1964, 9(10): 1259-1268.
[12] Flechsig G U, Korbout O, Hocevar S B, et al. Electrically heated bismuth-film electrode for voltammetric stripping measurements of trace metals[J]. Electroanalysis, 2002, 14(3): 192-196.
[13] Lau C, Flechsig G U, Gründler P, et al. Electrochemistry of nicotinamide adenine dinucleotide (reduced) at heated platinum electrodes[J]. Analytica Chimica Acta, 2005, 554(1): 74-78.
[14] Zhang J J, Liu Y, Hu L H, et al. €œProof-of-principle€ concept for ultrasensitive detection of cytokines based on the electrically heated carbon paste electrode[J]. Chemical Communications, 2011, 47(23): 6551-6553.
[15] Shi J J, He T T, Jiang F, et al. Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@PDA-
metal labels for rapid detection of MMP-9 and IL-6[J]. Biosensors and Bioelectronics, 2014, 55: 51-56.
[16] Wei H, Sun J J, Guo L, et al. Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode[J]. Chemical Communications, 2009, 20: 2842-2844.
[17] Wu S H, Zhang B, Wang F F, et al. Heating enhanced sensitive and selective electrochemical detection of Hg2+ based on T-Hg2+-T structure and exonuclease III-assisted target recycling amplification strategy at heated gold disk electrode[J]. Biosensors and Bioelectronics, 2018, 104: 145-151.
[18] Jasinski M, Kirbs A, Schmehl M, et al. Heated mercury film electrode for anodic stripping voltammetry[J]. Electrochemistry Communications, 1999, 1(1): 26-28.
[19] Compton R G, Coles B A, Marken F. Microwave activation of electrochemical processes at microelectrodes[J]. Chemical Communications, 1998, 23: 2595-2596.
[20] Ke J H, Tseng H J, Hsu C T, et al. Flow injection analysis of ascorbic acid based on its thermoelectrochemistry at disposable screen-printed carbon electrodes[J]. Sensors and Actuators B: Chemical, 2008, 130(2): 614-619.
[21] Qiu F L, Compton R G, Coles B A, et al. Thermal activation of electrochemical processes in a Rf-heated channel flow cell: experiment and finite element simulation[J]. Journal of Electroanalytical Chemistry, 2000, 492(2): 150-155.
[22] Gründler P. Theory and practice of sensors with hot-wire electrodes[J]. Fresenius Journal of Analytical Chemistry, 1998, 362(2): 180-183.
[23] Qu X L(瞿晓龙), Zhang Z F(张正富). Application of microwave heating in preparation of lithium batteries cathode materials[J]. Journal of Materials Science & Engineering (材料科学与工程学报), 2015, 33(5): 776-780.
[24] Compton R G, A. Coles B, Marken F. Microwave activation of electrochemical processes at microelectrodes[J]. Chemical Communications, 1998, 23: 2595-2596.
[25] Akkermans R P, Roberts S L, Marken F, et al. Methylene green voltammetry in aqueous solution: Studies using thermal, microwave, laser, or ultrasonic activation at platinum electrodes[J]. The Journal of Physical Chemistry B, 1999, 103(45): 9987-9995.
[26] Tsai Y C, Coles B A, Compton R G, et al. Microwave activation of electrochemical processes: Enhanced electrodehalogenation in organic solvent media[J]. Journal of the American Chemical Society, 2002, 124(33): 9784-9788.
[27] Kumar Sur U, Marken F, Coles B A, et al. Microwave activation in ionic liquids induces high temperature-high speed electrochemical processes[J]. Chemical Communications, 2004, 24: 2816-2817.
[28] Shafir A. Laser beam heating method and apparatus: U.S. Patent 5,298,719[P]. 1994-3-29.
[29] Valdes J L, Miller B. Thermal modulation of rotating-disk electrodes-steady-state response[J]. Journal of Physical Chemistry, 1988, 92(2): 525-532.
[30] Hinoue T, Ikeda E, Watariguchi S, et al. Thermal modulation voltammetry with laser heating at an aqueous|nitrobenzene solution microinterface: Determination of the standard entropy changes of transfer for tetraalkylammonium ions[J]. Analytical Chemistry, 2007, 79(1): 291-298.
[31] Hartshorn L. Radio-frequency heating[M]. George Allen & Unwin Ltd., 1949.
[32] Li Y L(李玉林), Jiao Y(焦阳), Wang Y F(王易芬). Application of radio frequency heating in food industry[J]. Food & Machinery (食品与机械), 2017, 33(12): 197-202.
[33] Gründler P, Degenring D. Temperature calculation for pulse-heated hot-wire electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 512(1/2): 74-82.
[34] Gründler P, Flechsig G U. Principles and analytical applications of heated electrodes[J]. Microchimica Acta, 2006, 154(3): 175-189.
[35] Gründler P, Kirbs A, Zerihun T. Hot-wire electrodes: Voltammetry above the boiling point[J]. Analyst, 1996, 121(12): 1805-1810.
[36] Zerihun T, Gründler P. Electrically heated cylindrical microelectrodes. The reduction of dissolved oxygen on Pt[J]. Cheminform, 1996, 27(39): 243-248.
[37] Beckmann A, Schneider A, Gründler P. Electrically heated cylindrical microelectrodes. Electrochemical measurements in THF[J]. Electrochemistry Communications, 1999, 1(1): 46-49.
[38] Gabrielli C, Keddam M, Lizee J F. A temperature perturbation method for electrochemical kinetics investigations[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 148(2): 293-297.
[39] Gründler P, Zerihun T, Möller A, et al. A simple method for heating micro electrodes in-situ[J]. Journal of Electroanalytical Chemistry, 1993, 360(1/2): 309-314.
[40] Baranski A S. Hot microelectrodes[J]. Analytical Chemistry, 2002, 74(6): 1294-1301.
[41] Gründler P, Flechsig G U. Deposition and stripping at heated microelectrodes. Arsenic(V) at a gold electrode[J]. Electrochimica Acta, 1998, 43(23): 3451-3458.
[42] Voss T, Gründler P, Brett C, et al. Electrochemical behaviour of cytochrome c at electrically heated microelectrodes[J]. Journal of Pharmaceutical and Biomedical Analysis, 1999, 19(1/2): 127-133.
[43] Walter A, Langschwager F, Marken F, et al. Nanostructured heated gold electrodes for DNA hybridization detection using enzyme labels[J]. Sensors and Actuators B: Chemical, 2016, 233: 502-509.
[44] Wu S H, Tang Y, Chen L, et al. Amplified electrochemical hydrogen peroxide reduction based on hemin/G-quadruplex DNAzyme as electrocatalyst at gold particles modified heated copper disk electrode[J]. Biosensors and Bioelectronics, 2015, 73: 41-46.
[45] Wang J, Gründler P, Flechsig G U, et al. Stripping analysis of nucleic acids at a heated carbon paste electrode[J]. Analytical Chemistry, 2000, 72(16): 3752-3756.
[46] Wang J, Flechsig G U, Erdem A, et al. Label-free DNA hybridization based on coupling of a heated carbon paste electrode with magnetic separations[J]. Electroanalysis, 2004, 16(11): 928-931.
[47] Zhang J J, Liu Y, Hu L H, et al. €œProof-of-principle€ concept for ultrasensitive detection of cytokines based on the electrically heated carbon paste electrode[J]. Chemical Communications, 2011, 47(23): 6551-6553.
[48] Jiang F, Zhang J J, Zhang J R, et al. Ultrasensitive immunoassay based on dual signal amplification of the electrically heated carbon electrode and quantum dots functionalized labels for the detection of matrix metalloproteinase-9[J]. Analyst, 2013, 138(7): 1962-1965.
[49] Lou Y B, He T T, Jiang F, et al. A competitive electrochemical immunosensor for the detection of human interleukin-6 based on the electrically heated carbon electrode and silver nanoparticles functionalized labels[J]. Talanta, 2014, 122: 135-139.
[50] Sun J J, Guo L, Zhang D F, et al. Heated graphite cylinder electrodes[J]. Electrochemistry Communications, 2007, 9(2): 283-288.
[51] Cheng H, Jiang S. Preparation and application of graphene modified heated glassy carbon electrode[C]//2nd International Conference on Civil, Materials and Environmental Sciences. Atlantis Press, 2015.
[52] Wu S H, Nie F H, Chen Q Z, et al. Highly sensitive detection of silybin based on adsorptive stripping analysis at single-sided heated screen-printed carbon electrodes modified with multi-walled carbon nanotubes with direct current heating[J]. Analytica Chimica Acta, 2011, 687(1): 43-49.
[53] Kale G M. Solid-state mixed-potential sensor employing tin-doped indium oxide sensing electrode and scandium oxide-stabilised zirconia electrolyte[J]. Advanced Powder Technology, 2009, 20(5): 426-431.
[54] Yin Z, Zhang J, Jiang L P, et al. Thermosensitive behavior of poly(N-isopropylacrylamide) and release of incorporated hemoglobin[J]. The Journal of Physical Chemistry C, 2009, 113(36): 16104-16109.
[55] Chen Y T, Jiang Y Y, Lin Z Y, et al. Fabrication of an electrically heated indium-tin-oxide electrode for electrochemiluminescent detection system[J]. Analyst, 2009, 134
(4): 731-737.
[56] Lin Z Y, Sun J J, Chen J H, et al. A new electrochemiluminescent detection system equipped with an electrically controlled heating cylindrical microelectrode[J]. Analytica Chimica Acta, 2006, 564(2): 226-230.
[57] Nasir M, Nawaz M H, Latif U, et al. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays[J]. Microchimica Acta, 2017, 184(2): 323-342.
[58] Yang H F, Zhang Y S, Qiu B, et al. The electrochemiluminescent behavior of nickel phthalocyanine (NiTSPc)/H2O2 system on a heated ITO electrode[J]. Chinese Chemical Letters, 2012, 23(6): 711-714.
[59] Ye R H, Chen X P, Qiu B, et al. Electrochemiluminescence behavior of Ru(bpy)32+/carbofuran system on an electrically heated microelectrode chip[J]. Chinese Journal of Chemistry, 2011, 29(10): 2148-2152.
[60] Lin Z Y, Sun J J, Chen J H, et al. Enhanced electrochemiluminescent of lucigenin at an electrically heated cylindrical microelectrode[J]. Electrochemistry Communications, 2007, 9(2): 269-274.
[61] Lin Z, Sun J, Chen J, et al. The electrochemiluminescent behavior of luminol on an electrically heating controlled microelectrode at cathodic potential[J]. Electrochimica Acta, 2007, 53(4): 1708-1712.
[62] Lin Z, Sun J, Chen J, et al. Electrochemiluminescent biosensor for hypoxanthine based on the electrically heated carbon paste electrode modified with xanthine oxidase[J]. Analytical Chemistry, 2008, 80(8): 2826-2831.
[63] Chen Y T, Jiang Y Y, Lin Z Y, et al. An electrochemiluminescent detector based on multi-wall-carbon-nanotube/Nafion/Ru(bpy)32+ composite film modified heated electrode[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(4): 2303-2309.
[64] Chen L C, Chi Y W, Zheng X X, et al. Heated indium tin oxide cell for studying ionic liquid-mediated electrochemiluminescence[J]. Analytical Chemistry, 2009, 81(6): 2394-2398.
[65] Chen Y T, Chen X, Lin Z Y, et al. An electrically heated ionic-liquid/multi-wall carbon nanotube composite electrode and its application to electrochemiluminescent detection of ascorbic acid[J]. Electrochemistry Communications, 2009, 11(6): 1142-1145.
[66] Lin Z Y, Chen X P, Chen H Q, et al. Electrochemiluminescent behavior of N6-isopentenyl-adenine/Ru(bpy)32+ system on an electrically heated ionic liquid/carbon paste electrode[J]. Electrochemistry Communications, 2009, 11(10): 2056-2059.
[67] Chen Y T, Li Y X, Jiang L Q, et al. Fabrication of a heated electrode modified with a thiol-functionalized ionic liquid for electrochemical/electrochemiluminescence sensors[J]. RSC Advances, 2016, 6(46): 39955-39961.
[68] Chen Y T, Qiu B, Jiang Y Y, et al. Detection of hypoxanthine based on the electrochemiluminescent of 6-(4-methoxyphenyl)-2-methylimidazo[1, 2-a] pyrazin-3(7H)-one on the electrically heated indium-tin-oxide electrode[J]. Electrochemistry Communications, 2009, 11(11): 2093-2096.
[69] Lin Z Y, Wang W Z, Jiang Y Y, et al. Detection of N-6-methyladenosine in urine samples by electrochemiluminescence using a heated ITO electrode[J]. Electrochimica Acta, 2010, 56(2): 644-648.
[70] Jacobsen M, Flechsig G U. Hybridization detection of osmium tetroxide bipyridine-labeled DNA and RNA on heated gold wire electrodes[J]. Electroanalysis, 2013, 25(2): 373-379.
[71] Flechsig G U, Peter J, Hartwich G, et al. DNA hybridization detection at heated electrodes[J]. Langmuir, 2005, 21(17): 7848-7853.
[72] Zhang H F, Zhuo Z S, Chen L J, et al. Enhanced performance of a hyperbranched rolling circle amplification based electrochemiluminescence aptasensor for ochratoxin A using an electrically heated indium tin oxide electrode[J]. Electrochemistry Communications, 2018, 88: 75-78.
[73] Chen Y, Lin Z, Chen J, et al. New capillary electrophoresis-electrochemiluminescence detection system equipped with an electrically heated Ru(bpy)32+/multi-wall-carbon-
nanotube paste electrode[J]. Journal of Chromatography A, 2007, 1172(1): 84-91.
[74] Chen Y T, Lin Z Y, Sun J J, et al. A new electrochemiluminescent detection system equipped with an electrically heated carbon paste electrode for CE[J]. Electrophoresis, 2007, 28(18): 3250-3259.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.