•  
  •  
 

Corresponding Author

Xiao-hua ZHANG(mickyxie@hnu.edu.cn);
Jin-hua CHEN(chenjinhua@hnu.edu.cn)

Abstract

A simple “signal-on” photoelectrochemical (PEC) sensing platform for sensitive assay of nucleic acids was developed by coupling catalytic hairpin assembly (CHA) signal amplification strategy with Ru(NH3)63+. Herein, cadmium sulfide (CdS) was deposited on the TiO2/indium tin oxide (ITO) electrode by a method of successive ionic layer adsorption and reaction (SILAR), serving as one kind of photoelectric material to broaden absorption range of TiO2 and to improve the photoelectric conversion efficiency. Thereafter, the capture DNA (C-DNA) was immobilized on the CdS/TiO2/ITO electrode. Simultaneously, Au-hairpin DNA probe 1 (Au-HP1) and hairpin DNA probe 2 (HP2) were able to hybridize to produce many Au-HP1:HP2 complexes under the existence of target DNA (T-DNA) based on CHA process. After that, C-DNA could capture Au-HP1:HP2 complex, leading to lots of double-stranded DNAs on the electrode to load numerous Ru(NH3)63+, which resulted in a remarkable increase of photocurrent. As a result, a wide linear range (10 fmol·L-1 to 1500 fmol·L-1) and a low detection limit (6.19 fmol·L-1) toward T-DNA were achieved. The developed method would have great potential applications in bioanalysis, screening of new drugs and early disease diagnosis.

Graphical Abstract

Keywords

photoelectrochemical biosensor, nucleic acid, catalytic hairpin assembly, [Ru(NH3)6]Cl3, CdS, TiO2

Publication Date

2019-04-28

Online Available Date

2019-02-01

Revised Date

2019-01-09

Received Date

2018-12-18

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.