Abstract
With the rapid development of human society and dramatically consumption of traditional energy, energy shortage and environmental pollution have become an important factor restricting the sustainable development of human society. At present, the development of clean and environmentally friendly renewable energy system has drawn much attention and becomes an important priority stratagem in the world. In many green and sustainable new energy projects, semiconductor-based photocatalytic hydrogen production technology which utilizes the available clean and renewable solar energy to prepare clean hydrogen energy is excepted to solve the crisis of energy shortage and environmental pollution, has become one of the most promising applied technology for the world. This paper reviews briefly semiconductor-based photocatalytic hydrogen production technology by introducing principles of photocatalytic water splitting, photoelectrochemistry of semiconductors and semiconductor electrode stability and photocatalytic hydrogen production efficiency. Some recent advances in semiconductor photocatalyst, photogenerated charge separation and photocatalytic hydrogen production system are highlighted. The existing problems and further development in this field are also proposed. The development of solar photocatalytic hydrogen production technology is commented and prospected.
Graphical Abstract
Keywords
solar energy, photocatalysis, hydrogen production, semicorductor, photoelectrochemistry
Publication Date
2019-10-28
Online Available Date
2019-10-28
Revised Date
2019-08-20
Received Date
2019-07-20
Recommended Citation
Zhi WU, Lan SUN, Chang-jian LIN.
Progress in Solar Photocatalytic Hydrogen Production[J]. Journal of Electrochemistry,
2019
,
25(5): 529-552.
DOI: 10.13208/j.electrochem.181147
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol25/iss5/2
References
[1] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces-principles, mechanizms, and selected results[J]. Chemical Reviews, 1995, 95(3): 735-758.
[2] Hameed A, Gondal M A. Laser induced photocatalytic generation of hydrogen and oxygen over NiO and TiO2[J]. Journal of Molecule Catalysis A: Chemical, 2004, 219(1): 109-119.
[3] Karn R K, Misra M, Srivastava O N. Semiconductor-septum photoelectrochemical cell for solar hydrogen production[J]. International Journal of Hydrogen Energy, 2000, 25(5): 407-413.
[4] Alexander B D, Kulesza P J, Rutkowska I, et al. Metal oxide photoanodes for solar hydrogen production[J]. Journal of Materials Chemistry, 2008, 18(20): 2298-2303.
[5] Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Reviews, 2010, 110(11): 6503-6570.
[6] Abe R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation[J]. Journal of Photochemical Photobiology C, 2010, 11(4): 179-209.
[7] Mohapatra S K, Raja K S, Mahajan V. K., et al. Efficient photoelectrolysis of water using TiO2 nanotube arrays by minimizing recombination losses with organic additives[J]. Journal of Physical Chemistry C, 2008, 112(29): 11007-11012.
[8] Nozik A J, Memming R. Physical chemistry of semiconductor-liquid interfaces[J]. Journal of Physical Chemistry, 1996, 100(31): 13061-13078.
[9] 黄昆,韩汝琦. 半导体物理基础[M]. 科学出版社,2010.
[10] Zhang Z, Yates J T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces[J]. Chemical Reviews, 2012, 112(10): 5520-5551.
[11] Ding C, Shi J, Wang Z, Li C. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces[J]. ACS Catalysis, 2017, 7(1): 675-688.
[12] Schmuki P, Bohni H, Bardwell J A. In-situ characterization of anodic silicon-oxide films by ac-impedance measurements[J]. Journal of Electrochemical Society, 1995, 142(5): 1705-1712.
[13] Nozik. J. Photoelectrochemistry: Application to solar energy conversion[J]. Annual Review of Physical Chemistry, 1978, 29: 189-222.
[14] Kegel J, Povey I M, Pemble M E. Zinc oxide for solar water splitting: A brief review of the material's challenges and associated opportunities[J]. Nano Energy, 2018, 54: 409-428.
[15] Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Chemical Society Review, 2014, 43(22): 7520-7535.
[16] Li R, Li C. Photocatalytic water splitting on semiconductor-based photocatalysts[J]. Advanced Catalysis, 2017, 60(60): 1-57.
[17] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Review, 2009, 38(1): 253-278.
[18] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-8.
[19] Ma Y, Wang X L, Jia Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews, 2014, 114(19): 9987-10043.
[20] Berger T, Sterrer M, Diwald O, et al. Light-induced charge separation in anatase TiO2 particles[J]. Journal of Physical Chemistry B, 2005, 109(13): 6061-6068.
[21] Gao C M, Wei T, Zhang Y Y, et al. A Photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution[J]. Advanced Materials, 2019: 31(8): 1806596.
[22] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96.
[23] Zhang J, Xu Q, Feng Z, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2[J]. Angewandte Chemie International Edition, 2008, 47(9): 1766-1769.
[24] Sayama K, Arakawa H. Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO2 catalyst[J]. Journal of the Chemical Society, Faraday Transactions., 1997, 93(8): 1647-1654.
[25] Li R G, Weng Y X, Zhou X, et al. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases[J]. Energy Environmental Science, 2015, 8(8): 2377-2382.
[26] Maeda K. Direct splitting of pure water into hydrogen and oxygen using rutile titania powder as a photocatalyst[J]. Chemical Communications, 2013, 49(75): 8404-8406.
[27] Domen K, Naito S, Soma M, et al. Photocatalytic decomposition of water-vapor on an NiO-SrTiO3 catalyst[J]. Journal of the Chemical Society, Chemical Communications, 1980, (12): 543-544.
[28] Ham Y, Hisatomi T, Goto Y, et al. Flux-mediated doping of SrTiO3 photocatalysts for efficient overall water splitting[J]. Journal Materials Chemistry A, 2016, 4(8): 3027-3033.
[29] Jeong H, Kim T, Kim D, et al. Hydrogen production by the photocatalytic overall water splitting on NiO/Sr3Ti2O7: Effect of preparation method[J]. International Journal of Hydrogen Energy 2006, 31(9): 1142-1146.
[30] Inoue Y, Kubokawa T, Sato K. Photocatalytic activity of alkali-metal titanates combined with Ru in the decomposition of water [J]. Journal of Physical Chemistry, 1991, 95(10): 4059-4063.
[31] Inoue Y, Asai Y, Sato K. Photocatalysis with tunnel structures for decomposition of water. 1. BaTi4O9, a pentagonal prism tunnel structure, and its combination with various promoters[J]. Journal of the Chemical Society, Faraday Transactions, 1994, 90(5): 797-802.
[32] Shangguan W, Yoshida A. Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed metal oxides[J]. International Journal of Hydrogen Energy, 1999, 24(5): 425-431.
[33] Yanagisawa M, Uchida S, Sato T. Synthesis and photochemical properties of Cu2+ doped layered hydrogen titanate[J]. International Journal of Inorganic Materials, 2000, 2(4): 339-346.
[34] Zhu H Y, Gao X P, Lan Y, et al. Hydrogen titanate nanofibers covered with anatase nanocrystals: A delicate structure achieved by the wet chemistry reaction of the titanate nanofibers[J]. Journal of American Chemical Society, 2004, 126(27): 8380-8381.
[35] Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure[J]. Journal of American Chemical Society, 2003, 125(10): 3082-3089.
[36] Borgarello E, Kiwi J, Gratzel M, et al. Visible-light induced water cleavage in colloidal solutions of chromium-doped titanium-dioxide particles[J]. Journal of American Chemical Society, 1982, 104(11): 2996-3002.
[37] Nishikawa T, Shinohara Y, Nakajima T, et al. Prospect of activating a photocatalyst by sunlight - a quantum chemical study of isomorphically substituted titania[J]. Chemical Letters, 1999, (11): 1133-1134.
[38] Anpo M. Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method[J]. Pure Applied Chemistry, 2000, 72(9): 1787-1792.
[39] Anpo M. Utilization of TiO2 photocatalysts in green chemistry[J]. Pure Applied Chemistry, 2000, 72(7): 1265-1270.
[40] Anpo M, Kishiguchi S, Ichihashi Y, et al. The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method[J]. Research on Chemical Intermediates, 2001, 27(4/5): 459-467.
[41] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. Journal Catalysis, 2003, 216(1/2): 505-516.
[42] Takeuchi M, Yamashita H, Matsuoka M, et al. Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst[J]. Catalysis Letters, 2000, 67(2/4): 135-137.
[43] Choi W Y, Termin A, Hoffmann M R. The role of metal-ion dopants in quantum-sized TiO2 correlation between photoreactivity and charge-carrier recombination dynamics[J]. Journal of Physical Chemistry, 1994, 98(51): 13669-13679.
[44] Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium[J]. Journal of Physical Chemistry B, 2002, 106(19): 5029-5034.
[45] Niishiro R, Kato H, Kudo A. Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions[J]. Physical Chemistry Chemical Physics, 2005, 7(10): 2241-2245.
[46] Niishiro R, Konta R, Kato H, et al. Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation[J]. Journal of Physical Chemistry C, 2007, 111(46): 17420-17426.
[47] Ikeda T, Nomoto T, Eda K, et al. Photoinduced dynamics of TiO2 doped with Cr and Sb[J]. Journal of Physical Chemistry C, 2008, 112(4): 1167-1173.
[48] Konta R, Ishii T, Kato H, et al. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation[J]. Journal of Physical Chemistry B, 2004, 108(26): 8992-8995.
[49] Nishimoto S, Matsuda M, Miyake M. Photocatalytic activities of Rh-doped CaTiO3 under visible light irradiation[J]. Chemical Letters, 2006, 35(3): 308-309.
[50] Zhang H, Chen G, Li Y, et al. Electronic structure and photocatalytic properties of copper-doped CaTiO3[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2713-2716.
[51] Yang Y H, Chen Q Y, Yin Z L, et al. Study on the photocatalytic activity of K2La2Ti3O10 doped with zinc(Zn)[J]. Applied Surface Science, 2009, 255(20): 8419-8424.
[52] Yang Y, Chen Q, Yin Z, et al. Study on the photocatalytic activity of K2La2Ti3O10 doped with vanadium (V)[J]. Journal of Alloys and Compounds, 2009, 488(1): 364-369.
[53] Asahi R, Morikawa T, Ohwaki T,et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
[54] Su Y, Zhang X, Han S, et al. F-B-codoping of anodized TiO2 nanotubes using chemical vapor deposition[J]. Electrochemistry Communications, 2007, 9(9): 2291-2298.
[55] Li D, Haneda H, Hishita S, et al. Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification[J]. Chemistry Materials, 2005, 17(10): 2596-2602.
[56] Chen X Q, Su Y L, Zhang X W, et al. Fabrication of visible-light responsive S-F-codoped TiO2 nanotubes[J]. Chinese Science Bulletin, 2008, 53(13): 1983-1987.
[57] Lim M, Zhou Y, Wood B, et al. Fluorine and carbon codoped macroporous titania microspheres: Highly effective photocatalyst for the destruction of airborne styrene under visible light[J]. Journal of Physical Chemistry C, 2008, 112(49): 19655-19661.
[58] Cong Y, Chen F, Zhang J, et al. Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity[J]. Chemical Letters, 2006, 35(7): 800-801.
[59] Periyat P, Mccormack D E, Hinder S J, et al. One-pot synthesis of anionic (nitrogen) and cationic (sulfur) codoped high-temperature stable, visible light active, anatase photocatalysts[J]. Journal of Physical Chemistry C, 2009, 113(8): 3246-3253.
[60] Sheng Y, Xu Y, Jiang D, et al. Hydrothermal preparation of visible-light-driven N-Br-codoped TiO2 photocatalysts[J]. International Journal of Photoenergy, 2008: 563949.
[61] Hitoki G, Takata T, Kondo J N, et al. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation(λ≤500 nm)[J]. Chemical Communications, 2002, 16: 1698-1699.
[62] Ishikawa A, Takata T, Kondo J N, et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation[J]. Journal of American Chemical Society, 2002, 124(45): 13547-13553.
[63] Maeda K, Teramura K, Takata T, et al. Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: Relationship between physical properties and photocatalytic activity[J]. Journal of Physical Chemistry B, 2005, 109(43): 20504-20510.
[64] Maeda K, Teramura K, Domen K. Effect of post-calcination on photocatalytic activity of (Ga1-xZnx)(N1-xOx) solid solution for overall water splitting under visible light[J]. Journal of Catalysis, 2008, 254(2): 198-204.
[65] Tsuji I, Kato H, Kobayashi H, et al. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)(x)Zn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures[J]. Journal of American Chemical Society, 2004, 126(41): 13406-13413.
[66] Tsuji I, Kato H, Kobayashi H, et al. Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)(x)Zn2(1-x)S2 solid solutions[J]. Journal of Physical Chemistry B, 2005, 109(15): 7323-7329.
[67] Tsuji I, Kato H, Kudo A. Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst[J]. Angewandte Chemie International Edition, 2005, 44(23): 3565-3568.
[68] Tsuji I, Kato H, Kudo A. Photocatalytic hydrogen evolution on ZnS-CuInS2-AgInS2 solid solution photocatalysts with wide visible light absorption bands[J]. Chemical Materials, 2006, 18(7): 1969-1975.
[69] Oregan B, Gratzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.
[70] Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998, 395(6702): 583-585.
[71] Grätzel M. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338-344.
[72] Maeda K, Eguchi M, Youngblood W J, et al. Niobium oxide nanoscrolls as building blocks for dye-sensitized hydrogen production from water under visible light irradiation[J]. Chemistry of Materials, 2008, 20(21): 6770-6778.
[73] Duonghong D, Borgarello E, Grätzel M. Dynamics of light-induced water cleavage in colloidal systems[J]. Journal of American Chemical Society, 1981, 103(16): 4685-4690.
[74] Dhanalakshmi K B, Latha S, Anandan S, et al. Dye sensitized hydrogen evolution from water[J]. International Journal of Hydrogen Energy, 2001, 26(7): 669-674.
[75] Bae E Y, Choi W Y, Park J W, et al. S. Effects of surface anchoring groups (carboxylate vs phosphonate) in ruthenium-complex-sensitized TiO2 on visible light reactivity in aqueous suspensions[J]. Journal of Physical Chemistry B, 2004, 108(37): 14093-14101.
[76] Abe R, Sayama K, Sugihara H. Effect of water/acetonitrile ratio on dye-sensitized photocatalytic H2 evolution under visible light irradiation[J]. Journal of Solar Energy Engineering - Transactions of the ASME, 2005, 127(3): 413-416.
[77] Cline E D, Adamson S E, Bernhard S. Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes[J]. Inorganic Chemistry, 2008, 47(22): 10378-10388.
[78] Archer S, Weinstein J A. Charge-separated excited states in platinum(II) chromophores: Photophysics, formation, stabilization and utilization in solar energy conversion[J]. Coordination Chemistry Review, 2012, 256(21/22): 2530-2561.
[79] Luo G G, Lu H, Zhang X L, et al. The relationship between the boron dipyrromethene (Bodipy) structure and the effectiveness of homogeneous and heterogeneous solar hydrogen-generating systems as well as DSSCs[J]. Physical Chemistry Chemical Physics, 2015, 17(15): 9716-9729.
[80] Zheng B, Sabatini R P, Fu W F, et al. Light-driven generation of hydrogen: New chromophore dyads for increased activity based on Bodipy dye and Pt(diimine)(dithiolate) complexes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): E3987-E3996.
[81] Li G, Mark M F, Lv H, et al. Rhodamine-platinum diimine dithiolate complex dyads as efficient and robust photosensitizers for light-driven aqueous proton reduction to hydrogen[J]. Journal of American Chemical Society, 2018, 140(7): 2575-2586.
[82] Yan H, Yang J, Ma G, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. Journal Catalysis, 2009, 266(2): 165-168.
[83] Chiarello G L, Selli E, Forni L. Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2[J]. Applied Catalysis B - Environmental, 2008, 84(1-2): 332-339.
[84] Ye M D, Gong J J, Lai Y K, et al. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays[J]. Journal of the American Chemical Society, 2012, 134(38): 15720-15723.
[85] Sreethawong T, Yoshikawa S. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts[J]. Catalysis Communications, 2005, 6(10): 661-668.
[86] Georgekutty R, Seery M K, Pillai S C. A highly efficient Ag-ZnO photocatalyst: Synthesis, properties, and mechanism[J]. Journal of Physical Chemistry C, 2008, 112(35): 13563-13570.
[87] Sasaki Y, Iwase A, Kato H, et al. The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation[J]. Journal of Catalysis, 2008, 259(1): 133-137.
[88] Maeda K, Saito N, Lu D, Inoue Y, et al. Photocatalytic properties of RuO2-loaded beta-Ge3N4 for overall water splitting[J]. Journal of Physical Chemistry C, 2007, 111(12): 4749-4755.
[89] Maeda K, Wang X, Nishihara Y, et al. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light[J]. Journal of Physical Chemistry C, 2009, 113(12): 4940-4947.
[90] Ma B J, Yang J H, Han H X, et al. Enhancement of photocatalytic water oxidation activity on IrOx-ZnO/Zn2-x-GeO4-x-3yN2y catalyst with the solid solution phase junction[J]. Journal of Physical Chemistry C, 2010, 114(29): 12818-12822.
[91] Wang D E, Li R G, Zhu J, et al. Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: Essential relations between electrocatalyst and photocatalyst[J]. Journal of Physical Chemistry C, 2012, 116(8): 5082-5089.
[92] Xiao Z, Wang Y, Huang Y C, et al. Filling the oxygen vacancies in CO3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting[J]. Energy Environmental Science, 2017, 10(12): 2563-2569.
[93] Chen S, Shen S, Liu G, et al. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation[J]. Angewandte Chemie International Edition, 2015, 54(10): 3047-3051.
[94] Kim T W, Choi K S. Nanoporous BiVO4 Photoanodes with dual-layer oxygen evolution catalysts for solar water splitting[J]. Science, 2014, 343(6174): 990-994.
[95] Liu G J, Shi J Y, Zhang F X, et al. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting[J]. Angewandte Chemie International Edition, 2014, 53(28): 7295-7299.
[96] Liu G J, Fu P, Zhou L Y, et al. Efficient hole extraction from a hole-storage-layer-stabilized tantalum nitride photoanode for solar water splitting[J]. Chemistry - A European Journal, 2015, 21(27): 9624-9628.
[97] Liu G J, Ye S L, Yan P L, et al. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting[J]. Energy Environmental Science, 2016, 9(4): 1327-1334.
[98] Low J X, Dai B Z, Tong T, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-Scheme TiO2 /CdS composite film photocatalyst[J]. Advanced Materials, 2019, 31(6): 1802981.
[99] Yu J D, Gong C, Wu Z, et al. Efficient visible light-induced photoelectrocatalytic hydrogen production using CdS sensitized TiO2 nanorods on TiO2 nanotube arrays[J]. Journal Materials Chemistry A, 2015, 3(44): 22218-22226.
[100] Lai Y K, Lin Z Q, Zheng D J, et al. CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells[J]. Electrochimica Acta, 2012, 79: 175-181.
[101] Wang W C, Li F, Zhang D Q, et al. Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays[J]. Applied Surface Science, 2016, 362: 490-497.
[102] Xu Y F, Wu W Q, Rao H S, et al. CdS/CdSe co-sensitized TiO2 nanowire-coated hollow spheres exceeding 6% photovoltaic performance[J]. Nano Energy, 2015, 11: 621-630.
[103] Ho-Kimura S, Moniz S J A, Handoko A D, et al. Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes[J]. Journal Materials Chemistry A, 2014, 2(11): 3948-3953.
[104] Li H F, Yu H J, Quan X, et al. Improved photocatalytic performance of heterojunction by controlling the contact facet: high electron transfer capacity between TiO2 and the {110} facet of BiVO4 caused by suitable energy band alignment[J]. Advanced Functional Materials, 2015, 25(20): 3074-3080.
[105] Wang Y J, Shi R, Lin J, et al. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4[J]. Energy Environmental Science, 2011, 4(8): 2922-2929.
[106] Li Y J, Feng J, Li H J, et al. Photoelectrochemical splitting of natural seawater with alpha-Fe2O3/WO3 nanorod arrays[J]. International Journal Hydrogen Energy, 2016, 41(7): 4096-4105.
[107] Sivula K, Le Formal F, Graetzel M. WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach[J]. Chemical Materials, 2009, 21(13): 2862-2867.
[108] Rajendran R, Yaakob Z, Teridi M, et al. Preparation of nanostructured p-NiO/n-Fe2O3 heterojunction and study of their enhanced photoelectrochemical water splitting performance[J]. Materials Letters, 2014, 133: 123-126.
[109] Yu J D, Gong C, Wu Z, et al. Efficient Visible linght-induced photoelectrocatalytic hydrogen production using CdS sensitized TiO2 nanorods on TiO2 nanotube arrays[J]. Journal Materials Chemistry A, 2015, 3(44): 22218-22226.
[110] Wang R Y, Li X D, Wang L, et al. Construction of Al-ZnO/CdS photoanodes modified with distinctive alumina passivation layer for improvement of photoelectrochemical efficiency and stability[J]. Nanoscale, 2018, 10(41): 19621-19627.
[111] Cao Z, Yin Y L, Yang W J, et al. Amorphous Co-Pi anchored on CdSe/TiO2 nanowire arrays for efficient photoelectrochemical hydrogen production[J]. Journal Materials Science, 2019, 54(4): 3284-3293.
[112] Xiang S W, Zhang Z Y, Wu Z, et al. 3D heterostructured Ti-based Bi2MoO6/Pd/TiO2 photocatalysts for high-efficiency solar light driven photoelectrocatalytic hydrogen generation[J]. ACS Applied Energy Materials, 2019, 2: 558-568.
[113] Xiang Q J, Yu J G. Graphene-based photocatalysts for hydrogen generation[J]. Journal of Physical Chemistry Letters, 2013, 4(5): 753-759.
[114] Xiang Q J, Yu J G, Jaroniec M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Review, 2012, 41(2): 782-796.
[115] Li Q, Guo B D, Yu J G, et al. Highly efficient visible-lightdriven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets[J]. Journal of American Chemical Society, 2011, 133(28): 10878-10884.
[116] Xiang Q J, Yu J G, Jaroniec M. Enhanced photocatalytic H2 production activity of graphene-modified titania nanosheets[J]. Nanoscale, 2011, 3(9): 3670-3678.
[117] Xiang Q J, Yu J G, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. Journal of Physical Chemistry C, 2011, 115(15): 7355-7363.
[118] Zhang J, Yu J G, Jaroniec M, et al. Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance[J]. Nano Letters, 2012, 12(9): 4584-4589.
[119] Xiang Q J, Yu J G, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. Journal of American Chemical Society, 2012, 134(15): 6575-6578.
[120] Zhang J, Qi L F, Ran J R, et al. Ternary NiS/ZnxCd1-xS/reduced graphene oxide nanocomposites for enhanced solar photocatalytic H2-production activity[J]. Advanced Energy Materials, 2014, 4(10): 1301925.
[121] Koriche N, Bouguelia A, Aider A, et al. Photocatalytic hydrogen evolution over delafossite CuAlO2[J]. International Journal of Hydrogen Energy, 2005, 30(7): 693-699.
[122] Saadi S, Bouguelia A, Trari M. Photoassisted hydrogen evolution over spinel CuM2O4 (M = Al, Cr, Mn, Fe and Co)[J]. Renewable Energy, 2006, 31(14): 2245-2256.
[123] Yeh T F, Syu J M, Cheng C, et al. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Advanced Functional Materials, 2010, 20(14): 2255-2262.
[124] Yang J H, Yan H J, Wang X L, et al. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production[J]. Journal of Catalysis, 2012, 290: 151-157.
[125] Arai N, Saito N, Nishiyama H, et al. Overall water splitting by RuO2-dispersed divalent-ion-doped GaN photocatalysts with d10 electronic configuration[J]. Chemical Letters, 2006, 35(7): 796-797.
[126] Galinska A, Walendziewski J. Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents[J]. Energy & Fuels, 2005, 19(3): 1143-1147.
[127] Zielinska B, Borowiak-Palen E, Kalenczuk R J. Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors[J]. International Journal Hydrogen Energy, 2008, 33(7): 1797-1802.
[128] Wu N L, Lee M S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution[J]. International Journal Hydrogen Energy, 2004, 29(15): 1601-1605.
[129] Daskalaki V M, Kondarides D I. Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions[J]. Catalysis Today, 2009, 144(1/2): 75-80.
[130] Huang Y F, Li J L, Wei Y L, et al. Fabrication and photocatalytic property of Pt-intercalated layered perovskite niobates H1-xLaNb2-xMoxO7 (x=0-0.15)[J]. Journal of Hazardous Materials, 2009, 166(1): 103-108.
[131] Chiarello G L, Forni L, Selli E. Photocatalytic hydrogen production by liquid- and gas-phase reforming of CH3OH over flame-made TiO2 and Au/TiO2[J]. Catalysis Today, 2009, 144(1/2): 69-74.
[132] Pan C, Takata T, Nakabayashi M, et al. A complex perovskite-type oxynitride: The first photocatalyst for water splitting operable at up to 600 nm[J]. Angewandte Chemie International Edition, 2015, 54(10): 2955-2959.
[133] Maeda K, Takata T, Hara M, et al. GaN : ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting[J]. Journal of American Chemical Society, 2005, 127(23): 8286-8287.
[134] Asai R, Nemoto H, Jia Q, et al. A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting[J]. Chemical Communications, 2014, 50(19): 2543-2546.
[135] Jo W J, Kang H J, Kong K J, et al. Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(45): 13774-13778.
[136] Liu J, Liu Y, Liu N Y, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science, 2015, 347(6225): 970-974.
[137] Wang Z, Inoue Y, Hisatomi T, et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles[J]. Nature Catalysis, 2018, 1(10): 756-763.
[138] Maeda K, Domen K. Photocatalytic water splitting: Recent progress and future challenges[J]. Journal of Physical Chemistry Letters, 2010, 1(18): 2655-2661.
[139] Maeda K. Z-scheme water splitting using two different semiconductor photocatalysts[J]. ACS Catalysis, 2013, 3(7): 1486-1503.
[140] Abe R, Sayama K, Sugihara H. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-[J]. Journal of Physical Chemistry B, 2005, 109(33): 16052-16061.
[141] Maeda K, Higashi M, Lu D, et al. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst[J]. Journal of American Chemical Society, 2010, 132(16): 5858-5868.
[142] Abe R, Higashi M, Domen K. Overall water splitting under visible light through a two-step photoexcitation between TaON and WO3 in the presence of an iodate-iodide shuttle redox mediator[J]. ChemSusChem, 2011, 4(2): 228-237.
[143] Sasaki Y, Nemoto H, Saito K, et al. Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator[J]. Journal Physical Chemistry C, 2009, 113(40): 17536-17542.
[144] Iwase A, Ng Y H, Ishiguro Y, et al. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light[J]. Journal of American Chemical Society, 2011, 133(29): 11054-11057.
[145] Wang Q, Li Y, Hisatomi T, et al. Z-scheme water splitting using particulate semiconductors immobilized onto metal layers for efficient electron relay[J]. Journal of Catalysis, 2015, 328: 308-315.
[146] Wang Q, Hisatomi T, Jia Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-
hydrogen energy conversion efficiency exceeding 1%[J]. Nature Materials, 2016, 15(6): 611-615.
[147] Takahashi M, Tsukigi K, Uchino T, et al. Enhanced photocurrent in thin film TiO2 electrodes prepared by sol-gel method[J]. Thin Solid Films, 2001, 388(1/2): 231-236.
[148] Salvador P. Hole diffusion length in n-TiO2 single-crystals and sintered electrodes-photoelectrochemical determination and comparative-analysis[J]. Journal of Applied Physics, 1984, 55(8): 2977-2985.
[149] Halary-Wagner E, Wagner F, Hoffmann P. Titanium dioxide thin-film deposition on polymer substrate by light induced chemical vapor deposition[J]. Journal of Electrochemical Society, 2004, 151(9): C571-C576.
[150] Young K M H, Klahr B M, Zandi O, et al. Photocatalytic water oxidation with hematite electrodes[J]. Catalysis Science & Technology, 2013, 3(7): 1660-1671.
[151] Murphy A B, Barnes P R F, Randeniya L K,et al. Efficiency of solar water splitting using semiconductor electrodes[J]. International Journal of Hydrogen Energy, 2006, 31(14): 1999-2017.
[152] Katz M J, Riha S C, Jeong N C, et al. Toward solar fuels: Water splitting with sunlight and “rust”?[J]. Coordination Chemical Review, 2012, 256(21/22): 2521-2529.
[153] Sivula K, Le Formal F, Graetzel M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes[J]. Chemsuschem, 2011, 4(4): 432-449.
[154] Tilley S D, Cornuz M, Sivula K, et al. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis[J]. Angewandte Chemie International Edition, 2010, 49(36): 6405-6408.
[155] Li J, Meng F, Suri S, Ding W, et al. Photoelectrochemical performance enhanced by a nickel oxide-hematite p-n junction photoanode[J]. Chemical Communications, 2012, 48(66): 8213-8215.
[156] Walsh A, Yan Y, Huda M N, et al. Band edge electronic structure of BiVO4: Elucidating the role of the Bi s and V d orbitals[J]. Chemistry Materials, 2009, 21(3): 547-551.
[157] Zhang L, Reisner E, Baumberg J J. Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation[J]. Energy Environmental Science, 2014, 7(4): 1402-1408.
[158] Park Y, Mcdonald K J, Choi K S. Progress in bismuth vanadate photoanodes for use in solar water oxidation[J]. Chemical Society Review, 2013, 42(6): 2321-2337.
[159] Hong S J, Lee S, Jang J S, et al. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation[J]. Energy Environmental Science, 2011, 4(5): 1781-1787.
[160] Li Z S, Luo W, Zhang M L, et al. Photoelectrochemi
Included in
Physical Chemistry Commons, Power and Energy Commons, Semiconductor and Optical Materials Commons