•  
  •  
 

Corresponding Author

Zhao-lei LI(zllinju@126.com);
Yan-min GAO(JKDGaoyanmin@163.com)

Abstract

In this work, hydrothermal reaction and high temperature were used to grow ZnCo2O4 active materials on Ni foam. The crystal stuctures and surface morphlogies of four samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The electrochemical performances were characterized by cyclic voltammetry (CV)、galvanostatic charge/discharge (GCD) testing and electrochemical impedance spectroscopy (EIS) on an electrochemical station. It can be seen that active materials tended to form denser stuctures with an increasing amount of NH4F in the solution system and four different morphologies of ZnCo2O4 were obtained: nanoneedles, thin nanoneedles-clusters, thick nanoneedles-clusters, and lozenge-like bulks.ZnCo2O4 with the thin nanoneedles-clusters morphology held the best electrochemaical performance with the capacitance of 2.77 F·cm-2 at the current density of 5 mA·cm-2. A button asymmetric supercapacitor (ZnCo2O4 -2/NF//AC/NF) assembled with ZnCo2O4 -2/NF and AC/NF exhibited the excellent performance in energy storage. The button asymmetric supercapacitors achieved an energy density of 114.49 μWh·cm-2 at power density of 4001.59 μW·cm-2 and a power density of 24000 μW·cm-2 at energy density of 80 μWh·cm-2.

Graphical Abstract

Keywords

zinc cobaltate, ammonium fluoride, areal capacitance, asymmetric supercapacitors

Publication Date

2019-12-28

Online Available Date

2018-08-14

Revised Date

2018-07-12

Received Date

2018-06-25

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.