•  
  •  
 

Corresponding Author

Hong-yan DAI(daihongyan12@sina.com)

Abstract

In order to find high quality and low price hydrogen catalyst, a scrap metal net was used as single-chamber microbial electrolytic cell (MEC) cathode, and its hydrogen production performance was investigated at different applied voltages. Meanwhile, the microbial community structures of original aerobic activated sludge, MFC and MEC anode microbes were analyzed by 16S rDNA amplicon sequencing technology. As the applied voltage increased, the maximum current density was increased and the running time was shortened. At an applied voltage of 0.7 V, the hydrogen production and electrical energy efficiency obtained with scrap metal mesh cathode MEC were, respectively, 0.330±0.012 m3H2·m-3·d-1 and 177.0±5.6%, which were much higher than those at 0.5 V, but similar to those at 0.9V. The performance of waste metal mesh cathode MEC was comparable to that of Pt/C cathode MEC, and had good durability. The results of 16S rDNA amplicon sequencing showed that the culture environment had a great influence on the enrichment and elimination of microorganisms. Geobacter, the dominant bacterium of MEC anode, was extremely enriched in the applied electric field environment with a relative abundance of more than 79.4%.

Graphical Abstract

Keywords

scrap metal net, microbial electrolytic cell, hydrogen-producing performance, 16S rDNA amplicon sequencing

Publication Date

2019-12-28

Online Available Date

2019-01-28

Revised Date

2018-11-19

Received Date

2018-10-10

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.