Corresponding Author

Jian-feng LI(li@xmu.edu.cn)


Since the 1970s, in-situ spectroscopy (Raman, infrared, etc.) has been used to systematically study the electrochemical interfacial reactions which can provide more information about surface reactions and reveal the mechanisms from microscopic view due to its excellent surface sensitivity and energy resolution. With the development of nano-technology, surface-enhanced Raman scattering effect spectroscopy has made rapid progress. Recently, the emergence of SHINERS provides a good in-situ spectroscopic technique for the study of catalytic reactions on single crystal model electrodes with deterministic surface structure. In this paper, we have summarized the application of SHINERS in the study of single crystal interface, and outlined the perspectives of SHINERS research in different fields.

Graphical Abstract


shell-isolated nanoparticle-enhanced Raman spectroscopy, spectroelectrochemistry, single crystal electrode, in-situ

Publication Date


Online Available Date


Revised Date


Received Date



[1] Sun S G, Clavilier J . The mechanism of electrocatalytic oxidation of formic acid on Pt(100) and Pt(111) in sulphuric acid solution: an emirs study[J]. Journal of Electroanalytical Chemistry, 1988,240(1/2):147-159.

[2] Tian N, Zhou Z Y, Sun S G . Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles[J]. Journal of Physical Chemistry C, 2008,112(50):19801-19817.
doi: 10.1021/jp804051e URL

[3] Krebs H J, Lüth H . Evidence for two different adsorption sites of CO on Pt(111) from infrared reflection spectroscopy[J]. Applied physics, 1977,14(4):337-342.
doi: 10.1007/BF00883436 URL

[4] Van Duyne R P, Haushalter J P . Surface-enhanced Raman spectroscopy of adsorbates on semiconductor electrode surfaces: tris(bipyridine)ruthenium(II) adsorbed on silver-modified n-gallium arsenide(100)[J]. Journal of Physical Chemistry, 1983,87(16):2999-3003.

[5] Van Duyne R P, Haushalter J P, Janik-Czachor M , et al. Surface-enhanced resonance Raman spectroscopy of adsorbates on semiconductor electrode surfaces. 2. In situ studies of transition metal (iron and ruthenium) complexes on silver/gallium arsenide and silver/silicon[J]. Journal of Physical Chemistry, 1985,89(19):4055-4061.
doi: 10.1021/j100265a026 URL

[6] Fleischmann M, Tian Z Q, Li L J . Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates[J]. Journal of Electroanalytical Chemistry, 1987,217(2):397-410.

[7] Anderson M S . Locally enhanced Raman spectroscopy with an atomic force microscope[J]. Applied Physics Letters, 2000,76(21):3130-3132.
doi: 10.1063/1.126546 URL

[8] Li J F, Zhang Y J, Ding S Y , et al. Core-shell nanoparticle-enhanced Raman spectroscopy[J]. Chemical Reviews, 2017,117(7):5002-5069.
doi: 10.1021/acs.chemrev.6b00596 URL pmid: 28271881

[9] Li J F, Huang Y F, Ding Y , et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010,464(7287):392-395.
doi: 10.1038/nature08907 URL pmid: 20237566

[10] Cai W B, Wan L J, Noda H , et al. Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy[J]. Langmuir, 1998,14(24):6992-6998.
doi: 10.1021/la980617i URL

[11] Andreasen G, Vela M E, Salvarezza R C , et al. Dynamics of pyridine adsorption on gold(111) terraces in acid solution from in-situ scanning tunneling microscopy under potentiostatic control[J]. Langmuir, 1997,13(25):6814-6819.
doi: 10.1021/la970417r URL

[12] Henglein F, Lipkowski J, Kolb D M . An optical study of pyridine adsorption on gold using synchrotron radiation[J]. Journal of Electroanalytical Chemistry, 1991,303(1/2):245-253.

[13] Li J F, Zhang Y J, Rudnev A V , et al. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: Correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface[J]. Journal of the American Chemical Society, 2015,137(6):2400-2408.
doi: 10.1021/ja513263j URL pmid: 25625429

[14] Wen B Y, Jin X, Li Y , et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces[J]. Analyst, 2016,141(12):3731-3736.
doi: 10.1039/c6an00180g URL pmid: 27001527

[15] Wen B Y, Yi J, Wang Y H , et al. In-situ monitoring of redox processes of viologen at Au(hkl) single-crystal electrodes using electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy[J] Electrochemistry Communications, 2016,72:131-134.
doi: 10.1016/j.elecom.2016.08.026 URL

[16] Greeley J, Jaramillo T F, Bonde J . Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nature Materials, 2006,5(11):909-913.
doi: 10.1038/nmat1752 URL pmid: 17041585

[17] Kibler L A, El-Aziz A M, Hoyer R , et al. Tuning reaction rates by lateral strain in a palladium monolayer[J]. Angewandte Chemie International Edition, 2005,44(14):2080-2084.
doi: 10.1002/anie.200462127 URL pmid: 15712312

[18] Wang Y H, Liang M M, Zhang Y J , et al. Probing interfacial electronic and catalytic properties on well-defined surfaces by using in situ Raman spectroscopy[J]. Angewandte Chemie International Edition, 2018,130(35):11427-11431.
doi: 10.1002/anie.201805464 URL pmid: 29998625

[19] Brankovic S R, Adžiĉ R R . Metal monolayer deposition by replacement of metal adlayers on electrode surfaces[J]. Surface Science, 2001,474(1/3):L173-L179.
doi: 10.1016/S0039-6028(00)01103-1 URL

[20] Schlaup C, Chorkendorff I . On the stability of copper overlayers on Au(111) and Au(100) electrodes under low potential conditions and in the presence on CO and CO2[J]. Surface Science, 2015,631:155-164.
doi: 10.1016/j.susc.2014.06.024 URL

[21] Kibler L A, Kleinert M, Randler R , et al. Initial stages of Pd deposition on Au(hkl) Part I: Pd on Au(111)[J]. Surface Science, 1999,443(1/2):19-30.
doi: 10.1016/S0039-6028(99)00968-1 URL

[22] Zhong J H, Jin X, Yang Z L , et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution[J]. Nature Nanotechnology, 2016,12(2):132-136.
doi: 10.1038/nnano.2016.241 URL pmid: 27870842

[23] Li C Y, Dong J C, Jin X , et al. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2015,137(24):7648-7651.
doi: 10.1021/jacs.5b04670 URL pmid: 26052930

[24] Dong J C, Zhang X G, Briega-Martos V , et al. In situ Raman spectral evidence for oxygen reduction reaction intermediates at platinum single crystal surfaces[J]. Nature Energy, 2019,4:60-67.
doi: 10.1038/s41560-018-0292-z URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.