•  
  •  
 

Authors

Tuo ZHAO, 1. School of Applied Chemistry and Engineering University of Science and Technology of China,Hefei 230026, Anhui ,China;2. State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022, Jilin, China;
Er-gui LUO, 1. School of Applied Chemistry and Engineering University of Science and Technology of China,Hefei 230026, Anhui ,China;2. State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022, Jilin, China;
Xian WANG, 1. School of Applied Chemistry and Engineering University of Science and Technology of China,Hefei 230026, Anhui ,China;2. State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022, Jilin, China;
Jun-jie GE, 1. School of Applied Chemistry and Engineering University of Science and Technology of China,Hefei 230026, Anhui ,China;2. State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022, Jilin, China;Follow
Chang-peng LIU, 1. School of Applied Chemistry and Engineering University of Science and Technology of China,Hefei 230026, Anhui ,China;2. State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022, Jilin, China;Follow
Wei XING, 1. School of Applied Chemistry and Engineering University of Science and Technology of China,Hefei 230026, Anhui ,China;2. State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022, Jilin, China;Follow

Corresponding Author

Jun-jie GE(gejj@ciac.ac.cn);
Chang-peng LIU(liuchp@ciac.ac.cn);
Wei XING(zmzhang@jlu.edu.cn)

Abstract

The development of highly efficient oxygen reduction reaction (ORR) catalysts is the key to the commercialization of fuel cells, where the sluggish ORR reaction rate needs to be overcome by adjusting the intermediates adsorption energies on the catalytic surfaces. To-date, platinum (Pt)-based materials are the-state-of-the-art catalysts in terms of both activity and stability in ORR, making them the preferred choice for commercial applications. However, the high cost of Pt-based catalysts limits their widespread use, leading to massive effects paid in reducing Pt loading, improving catalyst activity and stability. This article illustrates the challenges in the ORR reaction and introduces the recent research progresses in Pt-based oxygen reduction catalysts including the ORR mechanism, core-shell structures, one-dimensional nanostructure, and other representative works of Pt-based catalysts. Some perspectives in the future development trend of Pt-based catalysts are given at the end of the paper, hoping to provide readers with some ideological inspiration.

Graphical Abstract

Keywords

Pt-based catalysts, oxygen reduction reaction, platinum alloy, core-shell structures, one-dimensional structure

Publication Date

2020-02-28

Online Available Date

2020-02-28

Revised Date

2019-01-21

Received Date

2018-12-05

References

[1]Kibsgaard J, Gorlin Y, Chen Z B , et al. Meso-structured platinum thin films: active and stable electrocatalysts for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012,134(18):7758-7765.
doi: 10.1021/ja2120162 URL pmid: 22500676

[2]Zhang B W( 张斌伟), Wang Y X( 王云晓), Xu Y F( 徐燕裴 ), et al. Designing Pt-skin of Pt-based bimetallic electrocatalysts for oxygen reduction reaction[J]. Journal of Electrochemistry( 电化学), 2017,23(2):102-109.

[3]Ma T Y, Zheng Y, Dai S , et al. Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts[J]. Journal of Materials Chemistry A, 2014,2(23):8676-8682.

[4]Norskov J K, Rossmeisl J, Logadottir A , et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B, 2004,108(46):17886-17892.

[5]Wu G, More K L, Johnston C M , et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011,332(6028):443-447.
doi: 10.1126/science.1200832 URL pmid: 21512028

[6]Kongkanand A, Mathias M F . The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells[J]. Journal of Physical Chemistry Letters, 2016,7(7):1127-1137.
doi: 10.1021/acs.jpclett.6b00216 URL pmid: 26961326

[7]Eslamibidgoli M J, Huang J, Kadyk T , et al. How theory and simulation can drive fuel cell electrocatalysis[J]. Nano Energy, 2016,29:334-361.

[8]Schmidt T J, Paulus U A, Gasteiger H A , et al. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions[J]. Journal of Electroanalytical Chemistry, 2001,508(1/2):41-47.

[9]Hansen H A, Viswanathan V, Norskov J K . Unifying kinetic and thermodynamic analysis of 2 e- and 4 e- reduction of oxygen on metal surfaces[J]. Journal of Physical Chemistry C, 2014,118(13):6706-6718.

[10]Holton O T, Stevenson J W . The role of platinum in proton exchange membrane fuel cells evaluation of platinum’s unique properties for use in both the anode and cathode of a proton exchange membrane fuel cell[J]. Platinum Metals Review, 2013,57(4):259-271.

[11]Knozinge H, Kochloef K, Buhl H . Dehydration of alcohols on alumina reactivity and mechanism[J]. Journal of Catalysis, 1972,24:57-116.

[12]Cheng J, Hu P . Utilization of the three-dimensional volcano surface to understand the chemistry of multiphase systems in heterogeneous catalysis[J]. Journal of the American Chemical Society, 2008,130(33):10868-10869.
doi: 10.1021/ja803555g URL pmid: 18651740

[13]Bligaard T, Norskov J K, Dahl S , et al. The bronsted-evans-polanyi relation and the volcano curve in heterogeneous catalysis[J]. Journal of Catalysis, 2004,224(1):206-217.

[14]Campbell C T . Bimetallic surface chemistry[J]. Annual Review of Physical Chemistry, 1990,41:775-837.

[15]Rodriguez J . Physical and chemical properties of bimetallic surfaces[J]. Surface Science Reports, 1996,24(7/8):223-287.

[16]Schalow T, Brandt B, Starr D E , et al. Size-dependent oxidation mechanism of supported Pd nanoparticles[J]. Angewandte Chemie International Edition, 2006,45(22):3693-3697.
doi: 10.1002/anie.200504253 URL pmid: 16639764

[17]Wieckowski A, Savinova E R, Vayenas C G. Catalysis and electrocatalysis at nanoparticle surfaces[M]. CRC Press: 2003.

[18]Horsley J . A molecular orbital study of strong metal-support interaction between platinum and titanium dioxide[J]. Journal of the American Chemical Society, 1979,101(11):2870-2874.

[19]Kitchin J R, Norskov J K, Barteau M A , et al. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces[J]. Physical Review Letters, 2004,93(15):156801.
doi: 10.1103/PhysRevLett.93.156801 URL pmid: 15524919

[20]Bligaard T, Norskov J K . Ligand effects in heterogeneous catalysis and electrochemistry[J]. Electrochim Acta, 2007,52(18):5512-5516.
doi: 10.1021/ja057395c URL pmid: 16536548

[21]Wu J B, Qi L, You H J , et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities[J]. Journal of the American Chemical Society, 2012,134(29):11880-11883.
doi: 10.1021/ja303950v URL pmid: 22738173

[22]Stamenkovic V, Mun B S, Mayrhofer K J , et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angewandte Chemie International Edition, 45(1):2897-2901.
doi: 10.1002/anie.200504386 URL pmid: 16596688

[23]Tripkovic V, Skulason E, Siahrostami S , et al. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations[J]. Electrochimica Acta, 2010,55(27):7975-7981.

[24]Stamenkovic V R, Mun B S, Arenz M , et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials, 2007,6(3):241-247.
doi: 10.1038/nmat1840 URL pmid: 17310139

[25]Oezaslan M, Heggen M, Strasser P . Size-dependent morphology of dealloyed bimetallic catalysts: Linking the nano to the macro scale[J]. Journal of the American Chemical Society, 2012,134(1):514-524.
doi: 10.1021/ja2088162 URL pmid: 22129031

[26]Ou L H( 欧利辉), Cheng S L( 陈胜利 ). A DFT calculation screening of Pt-based bimetallic catalysts for oxygen reduction[J]. Journal of Electrochemistry( 电化学), 2013,19(1):1-5.

[27]Chen S, Ferreira P J, Sheng W , et al. Enhanced activity for oxygen reduction reaction on “Pt3CO” nanoparticles: Direct evidence of percolated and sandwich-segregation structures[J]. Journal of the American Chemical Society, 2008,130(42):13818-13819.
doi: 10.1021/ja802513y URL pmid: 18811156

[28]Yu Z Q, Zhang J L, Liu Z Y , et al. Comparison between dealloyed PtCo3 and PtCu3 cathode catalysts for proton exchange membrane fuel cells[J]. Journal of Physical Chemistry C, 2012,116(37):19877-19885.
doi: 10.1021/jp306179d URL pmid: 24416456

[29]Dutta I, Carpenter M K, Balogh M P , et al. Electrochemical and structural study of a chemically dealloyed PtCu oxygen reduction catalyst[J]. Journal of Physical Chemistry C, 2010,114(39):16309-16320.
doi: 10.1021/jp106042z URL pmid: 23807900

[30]Wang R Y, Xu C X, Bi X X , et al. Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts[J]. Energy & Environmental Science, 2012,5(1):5281-5286.

[31]Shui J I, Chen C, Li J C M . Evolution of nanoporous Pt-Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction[J]. Advanced Functional Materials, 2011,21(17):3357-3362.
doi: 10.1002/adfm.201100723 URL

[32]Wang D S, Zhao P, Li Y D . General preparation for Ptbased alloy nanoporous nanoparticles as potential nanocatalysts[J]. Scientific Reports, 2011, 1: 37:
doi: 10.1038/srep00037 URL pmid: 22355556

[33]Xiong Y L, Shan H, Zhou Z N , et al. Tuning surface structure and strain in Pd-Pt core-shell nanocrystals for enhanced electrocatalytic oxygen reduction[J]. Small, 2017,13(7):1603423.
doi: 10.1002/smll.201603423 URL pmid: 27860266

[34]Chen Y F, Fu G T, Li Y Y , et al. L-Glutamic acid derived PtPd@Pt core/satellite nanoassemblies as an effectively cathodic electrocatalyst[J]. Journal of Materials Chemistry A, 2017,5(8):3774-3779.

[35]Sasaki K, Naohara H, Cai Y , et al. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes[J]. Angewandte Chemie International Edition, 2010,49(46):8602-8607.
doi: 10.1002/anie.201004287 URL pmid: 20931587

[36]Wang C, Chi M F, Li D G , et al. Design and synjournal of bimetallic electrocatalyst with multilayered Pt-skin surfaces[J]. Journal of the American Chemical Society, 2011,133(36):14396-14403.
doi: 10.1021/ja2047655 URL

[37]Lee K S, Park H Y, Ham H C , et al. Reversible surface segregation of Pt in a Pt3Au/C catalyst and its effect on the oxygen reduction reaction[J]. Journal of Physical Chemistry C, 2013,117(18):9164-9170.

[38]Li J, Yin H M, Li X B , et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction[J]. Nature Energy, 2017,2(8):17111.

[39]Khateeb S, Guerreo S, Su D , et al. Fuel cell performance of palladium-platinum core-shell electrocatalysts Synthesized in gram-scale batches[J]. Journal of The Electrochemial Society, 2016,163(7):F708-F713.

[40]Li J R, Xi Z, Pan Y T , et al. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells[J]. Journal of the American Chemical Society, 2018,140(8):2926-2932.
doi: 10.1021/jacs.7b12829 URL pmid: 29411604

[41]Bu L Z, Zhang N, Guo S J , et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis[J]. Science, 2016,354(6318):1410-1414.
doi: 10.1126/science.aah6133 URL pmid: 27980207

[42]Koh S, Strasser P . Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying[J]. Journal of the American Chemical Society, 2007,129(42):12624-12625.
doi: 10.1021/ja0742784 URL pmid: 17910452

[43]Beermann V, Gocyla M, Willinger E , et al. Rh-doped Pt-Ni octahedral nanoparticles: understanding the correlation between elemental distribution, oxygen reduction reaction, and shape stability[J]. Nano Letters, 2016,16(3):1719-1725.
doi: 10.1021/acs.nanolett.5b04636 URL pmid: 26854940

[44]Bu L Z, Shao Q, Bin E , et al. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis[J]. Journal of the American Chemical Society, 2017,139(28):9576-9582.
doi: 10.1021/jacs.7b03510 URL pmid: 28657302

[45]Xu Q F, Chen W L, Yan Y C , et al. Multimetallic AuPd@Pd@Pt core-interlayer-shell icosahedral electrocatalysts for highly efficient oxygen reduction reaction[J]. Science Bulletin, 2018,63(8):494-501.

[46]Cademartiri L, Ozin G A . Ultrathin nanowires a materials chemistry perspective[J]. Advanced Materials, 2009,21(9):1013-1020.
doi: 10.1016/0277-5379(85)90284-6 URL pmid: 4065174

[47]Koenigsmann C, Scofield M E, Liu H , et al. Designing enhanced one-dimensional electrocatalysts for the oxygen reduction reaction: Probing size- and composition-dependent electrocatalytic behavior in noble metal nanowires[J]. Journal of Physical Chemistry Letters, 2012,3(22):3385-3398.

[48]Zhou X M, Yang H C, Wang C X , et al. Visible light induced photocatalytic degradation rhodamine B on one-dimensional iron oxide particles[J]. Journal of Physical Chemistry C, 2010,114(40):17051-17061.

[49]Liu W, Herrmann A K, Bigall N C , et al. Noble metal aerogels-synjournal, characterization, and application as electrocatalysts[J]. Accounts of Chemical Research, 2015,48(2):154-162.
doi: 10.1021/ar500237c URL pmid: 25611348

[50]Liu W, Rodriguez P, Borchardt L , et al. Bimetallic aerogels: high-performance electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013,52(37):9849-9852.
doi: 10.1002/anie.201303109 URL pmid: 23877963

[51]Zhang Z Y, Li M J, Wu Z L , et al. Ultra-thin PtFe-nano-wires as durable electrocatalysts for fuel cells[J]. Nano-technology, 2011,22(1):015602.
doi: 10.1088/0957-4484/22/1/015602 URL pmid: 21135465

[52]Higgins D C, Ye S, Knights S , et al. Highly durable platinum-cobalt nanowires by microwave irradiation as oxygen reduction catalyst for PEM fuel cell[J]. Electrochemical and Solid State Letters, 2012,15(6):B83-B85.

[53]Guo S J, Li D G, Zhu H Y , et al. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013,52(12):3465-3468.
doi: 10.1002/anie.201209871 URL pmid: 23420804

[54]Jiang K Z, Zhao D D, Guo S J , et al. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires[J]. Science Advances, 2017,3(2):e1601705.
doi: 10.1126/sciadv.1601705 URL pmid: 28275723

[55]Liu L F, Pippel E . Low-platinum-content quaternary PtCuCoNi nanotubes with markedly enhanced oxygen reduction activity[J]. Angewandte Chemie International Edition, 2011,50(12):2729-2733.
doi: 10.1002/anie.201006644 URL pmid: 21387476

[56]Li M F, Zhao Z P, Cheng T , et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016,354(6318):1414-1419.
doi: 10.1126/science.aaf9050 URL pmid: 27856847

[57] Dai Y, Ou L H, Liang W , et al. Efficient and superiorly durable Pt-lean electrocatalysts of Pt-W alloys for the oxygen reduction reaction[J]. The Journal of Physical Chemistry C, 2011,115(5):2162-2168.

[58] Stamenkovic V R, Fowler B, Mun B S , et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007,315(5811):493-497.
doi: 10.1126/science.1135941 URL pmid: 17218494

[59] Fowler B, Lucas C A, Omer A , et al. Segregation and stability at Pt3Ni(111) surfaces and Pt75Ni25 nanoparticles[J]. Electrochimica Acta, 2008,53(21):6076-6080.[60] Yang X, Roling L T, Vara M , et al. Synjournal and characterization of Pt-Ag alloy nanocages with enhanced activity and durability toward oxygen reduction[J]. Nano Letters, 2016,16(10):6644-6649.
doi: 10.1021/acs.nanolett.6b03395 URL pmid: 27661446

[61] Choi S I, Xie S, Shao M , et al. Synjournal and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction[J]. Nano Letters, 2013,13(7):3420-3425.
doi: 10.1021/nl401881z URL pmid: 23786155

[62] Carpenter M K, Moylan T E, Kukreja R S , et al. Solvo-thermal synjournal of platinum alloy nanoparticles for oxygen reduction electrocatalysis[J]. Journal of the American Chemical Society, 2012,134(20):8535-8542.
doi: 10.1021/ja300756y URL pmid: 22524269

[63] Chen C, Kang Y J, Huo Z Y , et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014,343(6177):1339-1343.
doi: 10.1126/science.1249061 URL pmid: 24578531

[64] Schmies H, Hornberger E, Anke B , et al. Impact of carbon support functionalization on the electrochemical stability of Pt fuel cell catalysts[J]. Chemistry of Materials, 2018,30(20):7287-7295.

[65] Beermann V, Gocyla M, Kuehl S , et al. Tuning the electrocatalytic oxygen reduction reaction activity and stability of shape-controlled Pt-Ni nanoparticles by thermal annealing elucidating the surface atomic structural and compositional changes[J]. Journal of the American Chemical Society, 2017,139(46):16536-16547.
doi: 10.1021/jacs.7b06846 URL pmid: 29019692

[66] Becknell N, Son Y, Kim D , et al. Control of architecture in rhombic dodecahedral Pt-Ni nanoframe electrocatalysts[J]. Journal of the American Chemical Society, 2017,139(34):11678-11681.
doi: 10.1021/jacs.7b05584 URL pmid: 28787139

[67] Ding J B, Bu L Z, Guo S J , et al. Morphology and phase controlled construction of Pt-Ni nanostructures for efficient electrocatalysis[J]. Nano Letters, 2016,16(4):2762-2767.
doi: 10.1021/acs.nanolett.6b00471 URL pmid: 26950511

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.