Abstract
Nickel-rich ternary materials with large reversible capacity as well as high operating voltage are considered as the most promising candidate for next generation lithium-ion batteries (LIBs). However, the inferior cycle stability and thermal stability have limited their widely commercial applications. Concentration gradient design of Ni-Co-Mn/Al ternary concentration gradient materials have been extensively studied in the past decade, which can ensure high cycle capacity while maintaining excellent cycle stability. In this paper, the latest research progresses in Ni-Co-Mn/Al ternary concentration gradient materials for LIBs are reviewed. Firstly, we summarize the different synthesis methods of ternary concentration-gradient materials, especially focusing on the research directions towards core-shell concentration gradient (CSCG) materials and full concentration gradient (FCG) ternary materials. In addition, this review also introduces the structural characterizations for concentration gradient ternary materials and reveals the reasons for their performance improvements. Finally, we discuss the current challenges of CSCG and FCG materials in the industrialization and display possible solutions to address them.
Graphical Abstract
Keywords
lithium-ion batteries, ternary concentration gradient material, core-shell concentration gradient, full concentration gradient
Publication Date
2020-02-28
Online Available Date
2019-01-15
Revised Date
2019-01-04
Received Date
2018-10-11
Recommended Citation
Chun-fang ZHANG, Wen-gao ZHAO, Shi-yao ZHENG, Yi-xiao LI, Zheng-liang GONG, Zhong-ru ZHANG, Yong YANG.
Research Progresses in Ni-Co-Mn/Al Ternary Concentration Gradient Cathode Materials for Li-Ion Batteries[J]. Journal of Electrochemistry,
2020
,
26(1): 73-83.
DOI: 10.13208/j.electrochem.181011
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol26/iss1/15
References
[1]
Goodenough J B, Park K S . The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013,135(4):1167-1176.
doi: 10.1021/ja3091438
URL
pmid: 23294028
[2] Liu H S( 刘汉三), Yang Y( 杨勇), Zhang Z R( 张忠如 ), et al. New progress in studies of lithium nickel oxide as positive electrode materials of lithium ion batteris[J]. Journal of Electrochemistry( 电化学), 2001,7(2):145-154.
[3]
Reimers J N, Dahn J R . Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2[J]. Journal of the Electrochemical Society, 1992,139(8):2091-2097.
doi: 10.1039/b901200a
URL
pmid: 19370225
[4]
Chung K Y, Kim K B . Investigations into capacity fading as a result of a Jahn-Teller distortion in 4 V LiMn2O4 thin film electrodes[J]. Electrochimica Acta, 2004, 49(20): 3327-3337.[4]
doi: 10.1016/j.electacta.2004.01.071
URL
[5] Feng Z S, Wang Y, Yang B C , et al. Research status of LiFePO4 cathode material for lithium-ion battery[J]. Journal of Functional Materials, 2011,42(4):581-584.
[6] Noh H J, Youn S, Chong S Y , et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2, ( x =1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013,233:121-130.
[7] Zhao W G, Zheng J M, Zou L F , et al. High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases[J]. Advanced Energy Materials, 2018, 2018,8(19):1800297.
[8] Zou L F, Zhao W G, Liu Z Y , et al. Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials[J]. ACS Energy Letters, 2018,3(10):2433-2440.
[9] Li X, Zhang K, Wang M S , et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2[J]. Sustainable Energy & Fuels, 2017,2(2):413-421.
[10] Yano A, Aoyama S, Shikano M , et al. Surface structure and high-voltage charge/discharge characteristics of Aloxide coated LiNi1/3Co1/3Mn1/3O2 cathodes[J]. Journal of The Electrochemical Society, 2015,162(2):A3137-A3144.
[11]
Yano A, Ueda A, Shikano M , et al. Surface structure and high-voltage charging/discharging performance of low-content Zr-oxide-coated LiNi1/3Co1/3Mn1/3O2[J]. Journal of The Electrochemical Society, 2016,163(2):A75-A82.
doi: 10.1149/2.0211602jes
URL
[12] Xiong X H, Wang Z X, Yin X , et al. A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Materials Letters, 2013,110(11):4-9.
[13] Chen Y P, Zhang Y, Chen B J , et al. An approach to application for LiNi0.6Co0.2Mn0.2O2, cathode material at high cutoff voltage by TiO2, coating[J]. Journal of Power Sources, 2014,256(12):20-27.
[14]
Chen Z H, Qin Y, Amine K , et al. Role of surface coating on cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010,20(36):7606-7612.
doi: 10.1039/c6sm01441k
URL
pmid: 27539982
[15] Sun Y K, Kim D H, Chong S Y , et al. A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries[J]. Advanced Functional Materials, 2010,20(3):485-491.
[16] Li J W( 李佳玮), Li Y( 厉英), Kong Y Z( 孔亚州 ). Recent progress in core-shell ternary cathode material for lithium-ion battery[J]. Materials Review: Nano and New Materials Album (材料导报: 纳米与新材料专辑), 2016(S1):187-190.
[17]
Sun Y K, Myung S T, Kim M H , et al. Synjournal and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries[J]. Journal of the American Chemical Society, 2005,127(38):13411-13418.
doi: 10.1021/ja053675g
URL
pmid: 16173775
[18] Cho S W, Kim G O, Ju J H , et al. X-ray absorption spectroscopy studies of the Ni ion of Li(Ni0.8Co0.15Al0.05)0.8-(Ni0.5Mn0.5)0.2O2, with a core-shell structure and LiNi0.8-Co0.15Al0.05O2, as cathode materials[J]. Materials Research Bulletin, 2012,47(10):2830-2833.
[19]
Sun Y K, Myung S T, Park B C , et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009,8(4):320-324.
doi: 10.1038/nmat2418
URL
pmid: 19305398
[20]
Sun Y K, Chen Z, Noh H J , et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012,11(11):942-947.
doi: 10.1038/nmat3435
URL
pmid: 23042415
[21] Song S L( 宋顺林), Zhang P L( 张朋立), Zheng C C( 郑长春 ), et al. Research progress on structural design of ternary cathode material[J]. Guangdong Chemical Industry( 广东化工), 2017,44(18):114-116.
[22] Michalska M, Lipinska L, Mirkowska M , et al. Nanocrystalline lithium manganese oxide spinels for Li-ion batteries-sol-gel synjournal and characterization of their structure and selected physical properties[J]. Solid State Ionics, 2011,188(1):160-164.
[23] Hou X H, Wang J Y, Zhang M , et al. Facile spray-drying/pyrolysis synjournal of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries[J]. RSC Advances , 2014,4(65):34615-34622.
[24]
Bommel A, Dahn J R . Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia[J]. Chemistry of Materials, 2009,21(8):1500-1503.
doi: 10.1021/cm803144d
URL
[25]
Sun Y K, Lee B R, Noh H J , et al. A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries[J]. Journal of Materials Chemistry, 2011,21(27):10108-10112.
doi: 10.1039/c0jm04242k
URL
[26]
Song D W, Hou P Y, Wang X Q , et al. Understanding the origin of enhanced performances in core-shell and concentration-gradient layered oxide cathode materials[J]. ACS Applied Materials & Interfaces, 2015,7(23):12864-12872.
doi: 10.1021/acsami.5b02373
URL
pmid: 26017733
[27] Voorhees P W . The theory of Ostwald ripening[J]. Journal of Statistical Physics, 1985,38(1/2):231-252.
[28]
Song D W, Hou P Y, Wang X Q , et al. Understanding the origin of enhanced performances in core-shell and concentration-gradient layered oxide cathode materials[J]. ACS Applied Materials & Interfaces, 2015,7(23):12864-12872.
doi: 10.1021/acsami.5b02373
URL
pmid: 26017733
[29] Sun Y K, Kim D H, Jung H G , et al. High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2010,55(28):8621-8627.
[30] Yoon C S, Kim S J, Kim U H , et al. Microstructure evolution of concentration gradient Li[Ni0.75Co0.10Mn0.15]O2 cathode for lithium-ion batteries[J]. Advanced Functional Materials, 2018,28(28):1802090.
[31]
Yoon S J, Myung S T, Noh H J , et al. Nanorod and nanoparticle shells in concentration gradient core-shell lithium oxides for rechargeable lithium batteries[J]. ChemSusChem, 2014,7(12):3295-3303.
doi: 10.1002/cssc.201402389
URL
pmid: 25044175
[32] Chen X L, Jia X B, Qu Y Y , et al. High-voltage performance of concentration-gradient Li[Ni0.6Co0.2Mn0.2]O2 layered oxide cathode materials for lithium batteries[J]. New Journal of Chemistry, 2018,42(8):5868-5874.
[33] Cheng X L, Li D, Mo Y , et al. Cathode materials with cross-stack structures for suppressing intergranular cracking and high-performance lithium-ion batteries[J]. Electrochimica Acta, 2018,261:513-520.
[34] Du K, Hua C S, Tan C P , et al. A high powered concentration-gradient Li(Ni0.85Co0.12Mn0.03)O2 cathode material for lithium ion batteries[J]. Journal of Power Sources, 2014,263:203-208.
[35] Jun D W, Chong S Y, Kim U H , et al. High-energy density core-shell structured Li[Ni0.95Co0.025Mn0.025]O2 cathode for lithium-ion batteries[J]. Chemistry of Materials, 2017,29(12):5048-5052.
[36] Sun Y K, Kim D H, Chong S Y , et al. A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries[J]. Advanced Functional Materials, 2010,20(3):485-491.
[37] Huang Z L, Gao J, He X M , et al. Well-ordered spherical LiNixCo(1-2x)MnxO2 cathode materials synthesized from cobolt concentration-gradient precursors[J]. Journal of Power Sources, 2012,202:284-290.
[38] Park K J, Choi M J, Maglia F , et al. High-capacity concentration gradient Li[Ni0.865Co0.120Al0.015]O2 cathode for lithium-ion batteries[J]. Advanced Energy Materials, 2018,8(19):1703612.
[39] Chen W H, Li Y Y, Zhao J J , et al. Controlled synjournal of concentration gradient LiNi0.84Co0.10Mn0.04Al0.02O1.90F0.1 with improved electrochemical properties in Li-ion batteries[J]. RSC Advances, 2016,6(63):58173-58181.
[40]
Shi J L, Qi R, Zhang X D , et al. A high thermal and air stability cathode material with concentration-gradient buffer for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017,9(49):42829-42835.
doi: 10.1021/acsami.7b14684
URL
pmid: 29148695
[41]
Zhang J C, Yang Z Z, Gao R , et al. Suppressing the structure deterioration of Ni-rich LiNi0.8Co0.1Mn0.1O2 through atom-scale interfacial integration of self-forming hierarchical spinel layer with Ni gradient concentration[J]. ACS Applied Materials & Interfaces, 2017,9(35):29794-29803.
doi: 10.1021/acsami.7b08802
URL
pmid: 28799736
[42]
Noh H J, Ju J W, Sun Y K , et al. Comparison of nanorod structured Li[Ni0.54Co0.16Mn0.30]O2 with conventional cathode materials for Li-ion batteries[J]. ChemSusChem. 2014,7(1):245-252.
doi: 10.1002/cssc.201300379
URL
pmid: 24127348
[43] Noh H J, Chen Z, Yoon C S , et al. Cathode material with nanorod structure-an application for advanced high-energy and safe lithium batteries[J]. Chemistry of Materials, 2013,25(10):2109-2115.
[44] Sun Z, Wang D, Fan Y , et al. Improved performances of LiNi0.6Co0.15Mn0.25O2 cathode material with full concentration-gradient for lithium ion batteries[J]. RSC Advances, 2016,6(105):103747-103753.
[45]
Song D W, Hou P Y, Wang X Q , et al. Understanding the origin of enhanced performances in core-shell and concentration-gradient layered oxide cathode materials[J]. ACS Applied Materials & Interfaces, 2015,7(23):12864-12872.
doi: 10.1021/acsami.5b02373
URL
pmid: 26017733
[46] LI Y, XU R, REN Y , et al. Synjournal of full concentration gradient cathode studied by high energy X ray diffraction[J]. Nano Energy, 2016,19:522-531.
[47] Hou P Y, Zhang L Q, Gao X P . A high-energy, full concentration-gradient cathode material with excellent cycle and thermal stability for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014,2(40):17130-17138.
[48] Erickson E M, Bouzaglo H, Sclar H , et al. Synjournal and electrochemical performance of nickel-rich layered-structure LiNi0.65Co0.08Mn0.27O2 cathode materials comprising particles with Ni and Mn full concentration gradients[J]. Journal of The Electrochemical Society, 2016,163(7):A1348-A1358.
[49]
Liang L W, Hu G R, Cao Y B , et al. Synjournal and characterization of full concentration-gradient LiNi0.7Co0.1Mn0.2-O2 cathode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2015,635:92-100.
doi: 10.1021/nl5022859
URL
pmid: 24960550
[50] Chae C, Noh H J, Lee J K , et al. A High-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode[J]. Advanced Functional Materials, 2014,24(20):3036-3042.
[51] Hua C S, Du K, Tan C P , et al. Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries[J]. Journal of Alloys And Compounds, 2014,614:264-270.
[52] Ju J W, Lee E J, Yoon C S , et al. Optimization of layered cathode material with full concentration gradient for lithium-ion batteries[J]. Journal of Physical Chemistry C, 2014,118(1):175-182.
[53] Kim U, Lee E, Yoon C S , et al. Lithium-ion batteries: compositionally graded cathode material with long-term cycling stability for electric vehicles application[J]. Advanced Energy Materials, 2016,6(5):1601417.
[54] Kim U H, Myung S T, Sun Y K , et al. Extending the battery life using an Al-doped Li[Ni0.76Co0.09Mn0.15]O2 cathode with concentration gradients for lithium ion batteries[J]. ACS Energy Letters, 2017,2(8):1848-1854.
[55] Lim B, Yoon S, Park K , et al. Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries[J]. Advanced Functional Materials, 2015,25(29):4673-4680.
[56] Chong S Y, Park K J, Kim U H , et al. High-energy Ni-rich Li[NixCoyMn1-x-y]O2 cathodes via compositional partitioning for next-generation electric vehicles[J]. Chemistry of Materials, 2017,29(24):10436-10445.
[57] Park K J, Lim B B, Choi M H , et al. A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015,3(44):22183-22190.
[58] Lee J H, Yoon C S, Hwang J Y , et al. High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode[J]. Energy & Environmental Science, 2016,9(6):2152-2158.
[59] Park K J, Lim B B, Choi M H , et al. A high-capacity Li-[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015,3(44):22183-22190.
[60] Lee E J, Noh H J, Yoon C S , et al. Effect of outer layer thickness on full concentration gradient layered cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2015,273:663-669.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons