Abstract
Carbon layers with different thicknesses were introduced into the surfaces of silicon (Si) nanoparticles by sol-gel method using poly (cyclotriphosphazene-co-4, 4'-sulfonyldiphenol) as the carbon source. Technologies of X-ray diffraction, thermo-gravimetric analysis, Brunauer-Emmett-Teller and transmission electron microscopy were employed to analyze the structures and components of the as-prepared Si@CPZS composites. Electrochemical performance of Si@CPZS with different carbon thicknesses was studied. The results showed that Si@CPZS with carbon thickness of 10 nm possessed the best performance. Its capacity remained 940 mAh·g-1 after 290 cycles under 500 mA·g-1. As the addictive, the graphite-based anode contained 30% of Si@CPZS composite could achieve the specific capacity higher than 700 mAh·g-1.
Graphical Abstract
Keywords
Si@C, anode, lithium ion battery, addictive of graphite
Publication Date
2020-02-28
Online Available Date
2020-02-28
Revised Date
2019-03-22
Received Date
2019-02-26
Recommended Citation
Qing-nuan ZHANG, Fang-fang ZHANG, Hong-xia LI, Bing-jun YANG, Xiao-cheng LI, Juan YANG.
Lithium Storage Performance of High Capacity Material Si@CPZS in Lithium Ion Batteries[J]. Journal of Electrochemistry,
2020
,
26(1): 121-129.
DOI: 10.13208/j.electrochem.190226
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol26/iss1/4
References
[1] Lang J W, Zhang X, Liu B , et al. The roles of graphene in advanced Li-ion hybrid supercapacitors[J]. Journal of Energy Chemistry, 2018,27(1):43-56.
[2] Casimir A, Zhang H, Ogoke O , et al. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synjournal and electrode preparation[J]. Nano Energy, 2016,27:359-376.
[3] Lee J K, Oh C, Kim N , et al. Rational design of silicon-based composites for high-energy storage devices[J]. Journal of Materials Chemistry A, 2016,4(15):5366-5384.
[4] Woo S G, Han J H, Kim K J , et al. Surface modification by sulfated zirconia on high-capacity nickel-based cathode materials for Li-ion batteries[J]. Electrochimica Acta, 2015,153:115-121.
[5] Zhou X, Han K, Jiang H , et al. High-rate and long-cycle silicon/porous nitrogen-doped carbon anode via a low-cost facile pre-template-coating approach for Li-ion batteries[J]. Electrochimica Acta, 2017,245:14-24.
[6]
Hassan F M, Elsayed A R, Chabot V , et al. Subeutectic growth of single-crystal silicon nanowires grown on and wrapped with graphene nanosheets: high-performance anode material for lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2014,6(16):13757-13764.
doi: 10.1021/am5032067
URL
pmid: 25077883
[7]
Liu L H, Lyu J, Li T H , et al. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes[J]. Nanoscale, 2016,8(2):701-722.
doi: 10.1039/c5nr06278k
URL
pmid: 26666682
[8]
Yang T, Li X, Tian X D , et al. Preparation and electrochemical performance of Si@C/SiOx as anode material for lithium-ion batteries[J]. Journal of Inorganic Materials, 2017,32(7):699-704.
doi: 10.15541/jim20160516
URL
[9]
Bai X J, Liu C, Hou M , et al. Silicon/CNTs/Graphene free-standing anode material for lithium-ion battery[J]. Journal of Inorganic Materials, 2017,32(7):705-712.
doi: 10.15541/jim20160520
URL
[10]
Zhou L, Zhuang Z, Zhao H , et al. Intricate hollow structures: controlled synjournal and applications in energy storage and conversion[J]. Advanced Materials, 2017,29(20):1602914.
doi: 10.1002/adma.201602914
URL
pmid: 28169464
[11]
Pan L, Wang H B, Gao D C , et al. Facile synjournal of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries[J]. Chemical Communications, 2014,50(44):5878-5880.
doi: 10.1039/c4cc01728e
URL
pmid: 24756611
[12] Shen T, Xia X H, Xie D , et al. Encapsulating silicon nano-particles into mesoporous carbon forming pomegranate-structured microspheres as a high-performance anode for lithium ion batteries[J]. Journal of Materials Chemistry A, 2017,5(22):11197-11203.
[13]
`Liu N, Lu Z D, Zhao J , et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014,9(3):187-192.
doi: 10.1038/nnano.2014.6
URL
pmid: 24531496
[14] Zhang L, Rajagopalan R, Guo H , et al. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries[J]. Advanced Functional Materials, 2016,26(3):440-446.
[15]
Wu H, Chan G, Choi J W , et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012,7(5):310-315.
doi: 10.1038/nnano.2012.35
URL
pmid: 22447161
[16] Zhang J W, Huang X B, Wei H , et al. Enhanced electrochemical properties of polyethylene oxide-based composite solid polymer electrolytes with porous inorganic-organic hybrid polyphosphazene nanotubes as fillers[J]. Journal of Solid State Electrochemistry, 2012,16(1):101-107.
[17]
Lin N, Zhou J B, Wang L B , et al. Polyaniline-assisted synjournal of Si@C/RGO as anode material for rechargeable lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015,7(1):409-414.
doi: 10.1021/am506404b
URL
pmid: 25494648
[18]
Du F H, Ni Y, Ye Wang Y , et al. Green fabrication of silkworm cocoon-like silicon-based composite for high-performance Li-ion batteries[J]. ACS Nano, 2017,11(9):8628-8635.
doi: 10.1021/acsnano.7b03830
URL
pmid: 28800223
[19]
Du F H, Ni Y, Wang Y , et al. Green fabrication of silkworm cocoon-like silicon-based composite for high-performance Li-ion batteries[J]. ACS Nano, 2017,11(9):8628-8635.
doi: 10.1021/acsnano.7b03830
URL
pmid: 28800223
[20] Luo W, Wang Y X, Chou S L , et al. Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes[J]. Nano Energy, 2016,27:255-264.
[21]
Hu Y S, Demir-Cakan R, Titirici M M , et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2008,47(9):1645-1649.
doi: 10.1002/anie.200704287
URL
pmid: 18213561
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons