Corresponding Author

Jian LI(lijian@hust.edu.cn)


Solid oxide fuel cell (SOFC) is a generating device by electrochemical reaction to transfer the chemical energy of fossil fuels (coal, oil and gas, etc.), the biomass fuel or other hydrocarbon fuels directly into electricity with higher energy conversion efficiency and lower pollution, which is recognized to be efficient green energy technology in the 21st century. However, when hydrocarbons are directly used as fuel, carbon deposition is easy to occur in nickel-based anode, thus, losing electrochemical catalytic activity. Fuel pre-reforming on the outside of the anode is an effective solution, which strongly relies on highly efficient and stable reforming catalysts. In this paper, we summarize the application of perovskite catalyst in fuel reforming based on the research progress of our research group, and provide the corresponding views and prospects.

Graphical Abstract


solid oxide fuel cell, fuel reforming, perovskite catalysts

Publication Date


Online Available Date


Revised Date


Received Date



[1]Liu Z W, Hao H, Cheng X , et al. Critical issues of energy efficient and new energy vehicles development in China[J]. Energy Policy, 2018,115:92-97.
doi: 10.1016/j.enpol.2018.01.006 URL

[2]Ming Z, Song X, Ma M J , et al. New energy bases and sustainable development in China: A review[J]. Renewable and Sustainable Energy Reviews, 2013,20:169-185.
doi: 10.1016/j.rser.2012.11.067 URL

[3]Zhu J, Zhou D Q, Pu Z N , et al. A study of regional power generation efficiency in china: based on a non-radial directional distance function model[J]. Sustainability, 2019,11(3):1-18
doi: 10.3390/su11010001 URL

[4]Dong Y L, Jiang X, Liang Z H , et al. Coal power flexibility, energy efficiency and pollutant emissions implications in China: A plant-level analysis based on case units[J]. Resources Conservation & Recycling, 2018,134:184-195.

[5]Yang Q P, Lin W J, Wang Y M , et al. Industry development and frontier technology roadmap of thermal power generation[J]. Proceedings of the Csee, 2017,37(13):3787-3794.

[6]Bouman E A, Ramirez A, Hertwich E G . Multiregional environmental comparison of fossil fuel power generation-Assessment of the contribution of fugitive emissions from conventional and unconventional fossil resources[J]. International Journal of Greenhouse Gas Control, 2015,33:1-9.
doi: 10.1016/j.ijggc.2014.11.015 URL

[7]Zheng Z L( 郑志林), Yuan X Z( 袁晓姿), Yin Y M( 尹屹梅 ), et al. Fuel cells reactor for chemicals and electric energy cogeneration[J]. Journal of Electrochemistry( 电化学), 2018,24(6):615-627.

[8]Wei Z D( 魏子栋 ). Special issue: Electrocatalyst and electrocatalysis in fuel cells preface[J]. Journal of Electrochemistry( 电化学), 2016,22(2):99-100.

[9]Kordesch K V, Simader G R . Environmental impact of fuel cell technology[J]. Chemical Reviews, 1995,95(1):191-207.
doi: 10.1021/cr00033a007 URL

[10]Winter M, Brodd R J . What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004,104(10):4245-4270.
doi: 10.1021/cr020730k URL

[11]Carrette L, Friedrich K A, Stimming U . Fuel cells-fundamentals and applications[J]. Fuel Cells, 2001,1(1):5-39.
doi: 10.1002/(ISSN)1615-6854 URL

[12]Brett D J L, Atkinson A, Brandon N P , et al. Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews, 2008,37(8):1568-1578.
doi: 10.1039/b612060c URL

[13]Ormerod R M . Solid oxide fuel cells[J]. Chemical Society Reviews, 2003,32(1):17-28.
doi: 10.1039/b105764m URL

[14]Brandon N P, Skinner S, Steele B C H . Recent advances in materials for fuel cells[J]. Annual Review of Materials Research, 2003,33(1):183-213.
doi: 10.1146/annurev.matsci.33.022802.094122 URL

[15]Minh N Q . Solid oxide fuel cell technology-features and applications[J]. Solid State Ionics, 2004,174(1/4):271-277.
doi: 10.1016/j.ssi.2004.07.042 URL

[16]Wachsman E D, Lee K T . Lowering the temperature of solid oxide fuel cells[J]. Science, 2011,334(6058):935-939.
doi: 10.1126/science.1204090 URL

[17]Singh P, Minh N Q . Solid oxide fuel cells: Technology status[J]. International Journal of Applied Ceramic Technology, 2004,1(1):5-15.
doi: 10.1111/ijac.2004.1.issue-1 URL

[18]Yamamoto O . Solid oxide fuel cells: fundamental aspects and prospects[J]. Electrochimica Acta, 2000,45(15/16):2423-2435.
doi: 10.1016/S0013-4686(00)00330-3 URL

[19]Wang W, Su C, Wu Y Z , et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chemical Reviews, 2013,113(10):8104-8151.
doi: 10.1021/cr300491e URL

[20]Mclntosh S, Gorte R J . Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews, 2004,104(10):4845-4866.
doi: 10.1021/cr020725g URL

[21]Mcintosh S, Vohs J M, Gorte R J . Effect of precious-metal dopants on SOFC anodes for direct utilization of hydrocarbons[J]. Electrochemical and Solid-State Letters, 2003,6(11):A240-A243.
doi: 10.1149/1.1613231 URL

[22]Gross M D, Vohs J M, Gorte R J . An examination of SOFC anode functional layers based on ceria in YSZ[J]. Journal of The Electrochemical Society, 2007,154(7):B694-B699.
doi: 10.1149/1.2736647 URL

[23]Zhou Z F, Kumar R, Thakur S T . Direct oxidation of waste vegetable oil in solid-oxide fuel cells[J]. Journal of Power Sources, 2007,171(2):856-860.
doi: 10.1016/j.jpowsour.2007.06.210 URL

[24]Cimenti M, Hill J M . Direct utilization of ethanol on ceria-based anodes for solid oxide fuel cells[J]. Asia-Pacific Journal of Chemical Engineering, 2009,4(1):45-54.
doi: 10.1002/apj.v4:1 URL

[25]Fagg D P, Kharton V V, Kovalevsky A V , et al. The stability and mixed conductivity in La and Fe doped SrTiO3, in the search for potential SOFC anode materials[J]. Journal of the European Ceramic Society, 2001,21(10):1831-1835.
doi: 10.1016/S0955-2219(01)00125-X URL

[26]Li X, Zhao H L, Gao F , et al. Synjournal and electrical properties of Co-doped Y0.08Sr0.92TiO3-δ as a potential SOFC anode[J]. Solid State Ionics, 2008,179(27/32):1588-1592.
doi: 10.1016/j.ssi.2007.12.097 URL

[27]Vasechko V, Huang B, Ma Q , et al. Thermomechanical properties of Y-substituted SrTiO3 used as re-oxidation stable anode substrate material[J]. Journal of the European Ceramic Society, 2014,34(15):3749-3754.
doi: 10.1016/j.jeurceramsoc.2014.05.013 URL

[28]Vincent A, Luo J L, Chuang K T , et al. Effect of Ba doping on performance of LST as anode in solid oxide fuel cells[J]. Journal of Power Sources, 2010,195(3):769-774.
doi: 10.1016/j.jpowsour.2009.08.018 URL

[29]Tao S, Irvine J T S . A redox-stable efficient anode for solid-oxide fuel cells[J]. Nature Materials, 2003, 2(5): 320-323.
doi: 10.1038/nmat871 URL

[30]Huang Y H, Dass R I, Xing Z L , et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science, 2006,312(5771):254-257.
doi: 10.1126/science.1125877 URL

[31]Zhan Z L, Barnett S A . An octane-fueled solid oxide fuel cell[J]. Science, 2005,308(5723):844-847.
doi: 10.1126/science.1109213 URL

[32]Wang W, Zhou W, Ran R , et al. Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer[J]. Electrochemistry Communications, 2009,11(1):194-197.
doi: 10.1016/j.elecom.2008.11.014 URL

[33]Hua B, Li M, Pu J , et al. Enhanced electrochemical performance and carbon deposition resistance of Ni-YSZ anode of solid oxide fuel cells by in situ formed Ni-MnO layer for CH4 on-cell reforming[J]. Journal of Materials Chemistry A, 2014,2(4):1150-1158.
doi: 10.1039/c3ta12766d URL

[34]Hua B, Li M, Zhang W Y , et al. Methane on-cell reforming by alloys reduced from Ni0.5Cu0.5Fe2O4 for direct-hydrocarbon solid oxide fuel cells[J]. Journal of The Electrochemical Society, 2014,161(4):F569-F575.
doi: 10.1149/2.097404jes URL

[35]Hua B, Li M, Pu J , et al. BaZr0.1Ce0.7Y0.1Yb0.1O3-δ enhanced coking-free on-cell reforming for direct-methane solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2014,2(31):12576-12582.
doi: 10.1039/c4ta01989j URL

[36]Hua B, Li M, Luo J L , et al. Carbon-resistant Ni-Zr0.92Y0.08-O2-δ supported solid oxide fuel cells using Ni-Cu-Fe alloy cermet as on-cell reforming catalyst and mixed methane-steam as fuel[J]. Journal of Power Sources, 2016,303:340-346.
doi: 10.1016/j.jpowsour.2015.11.029 URL

[37]Gür T M . Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas[J]. Progress in Energy & Combustion Science, 2016,54:1-64.

[38]Shin H H, McIntosh S . Proton-conducting perovskites as supports for Cr catalysts in short contact time ethane dehydrogenation[J]. ACS Catalysis, 2015,5(1):95-103.
doi: 10.1021/cs501314w URL

[39]James O O, Mandal S, Alele N , et al. Lower alkanes dehydrogenation: Strategies and reaction routes to corresponding alkenes[J]. Fuel Processing Technology, 149:239-255.
doi: 10.1016/j.fuproc.2016.04.016 URL

[40]Bhasin M M, McCain J H, Vora B V , et al. Dehydrogenation and oxydehydrogenation of paraffins to olefins[J]. Applied Catalysis A: General, 2001,221(1/2):397-419.
doi: 10.1016/S0926-860X(01)00816-X URL

[41]Galvita V, Siddiqi G, Sun P , et al. Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts[J]. Journal of Catalysis, 2010,271(2):209-219

[42]Liu S, Chuang K T, Luo J L . Double-layered perovskite anode with in situ exsolution of a Co-Fe alloy to cogenerate ethylene and electricity in a proton-conducting ethane fuel cell[J]. ACS Catalysis, 2016,6(2):760-768.
doi: 10.1021/acscatal.5b02296 URL

[43]Liu S, Qing X, Fu X Z , et al. Cogeneration of ethylene and energy in protonic fuel cell with an efficient and stable anode anchored with in-situ exsolved functional metal nanoparticles[J]. Applied Catalysis B: Environmental, 2018,220:283-289.

[44]Pindoria R V, Megaritis A, Herod A A , et al. A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: effect of catalyst temperature, pressure and catalyst ageing time on product characteristics[J]. Fuel, 1998,77(15):1715-1726.

[45]Pindoria R V, Lim J Y, Hawkes J E , et al. Structural characterization of biomass pyrolysis tars/oils from eucalyptus wood waste: effect of H2 pressure and sample configuration[J]. Fuel, 1997,76(11):1013-1023.
doi: 10.1016/S0016-2361(97)00092-6 URL

[46]Nokkosmäki M I, Kuoppala E T, Leppämäki E A , et al. Catalytic conversion of biomass pyrolysis vapours with zinc oxide[J]. Journal of Analytical & Applied Pyrolysis, 2000,55(1):119-131.

[47]Adam J, Blazsó M, Mészáros E , et al. Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts[J]. Fuel, 2015,84(12):1494-1502.

[48]Wang D, Czernik S, Montané D , et al. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions[J]. Industrial & Engineering Chemistry Research, 1997,36(5):1507-1518.

[49]Wang D, Stefan Czernik A, Chornet E . Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils[J]. Energy & Fuels, 1998,12(1):19-24.

[50]Lasa H D, Salaices E, Mazumder J , et al. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics[J]. Chemical Reviews, 2011,111(9):5404-5433.
doi: 10.1021/cr200024w URL

[51]Takeguchi T, Kani Y, Yano T , et al. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets[J]. Journal of Power Sources, 2002,112(2):588-595.
doi: 10.1016/S0378-7753(02)00471-8 URL

[52]Garcia L, French R, Czernik S , et al. Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition[J]. Applied Catalysis A: General, 2000,201(2):225-239.

[53]Trane R, Dahl S, Skjøth-Rasmussen M S , et al. Catalytic steam reforming of bio-oil[J]. International Journal of Hydrogen Energy, 2012,37(8):6447-6472.
doi: 10.1016/j.ijhydene.2012.01.023 URL

[54]Xu W Q, Yin Y G, Suib S L , et al. Selective conversion of n-butene to isobutylene at extremely high space velocities on ZSM-23 zeolites[J]. Journal of Catalysis, 1994,150(1):34-45.

[55]Guell B M, Babich I, Nichols K P , et al. Design of a stable steam reforming catalyst - A promising route to sustainable hydrogen from biomass oxygenates[J]. Applied Catalysis B: Environmental, 2009,90(1):38-44.

[56]Basagiannis A C, Verykios X E . Influence of the carrier on steam reforming of acetic acid over Ru-based catalysts[J]. Applied Catalysis B: Environmental, 2008,82(1):77-88.

[57]Fabbri E, Pergolesi D, Traversa E . Cheminform abstract: Materials challenges toward proton-conducting oxide fuel cells: a critical review[J]. Chemical Society Reviews, 2010,39(11):4355-4369.
doi: 10.1039/b902343g URL

[58]Saunders G J, Preece J, Kendall K . Formulating liquid hydrocarbon fuels for SOFCs[J]. Journal of Power Sources, 2004,131(1):23-26.
doi: 10.1016/j.jpowsour.2004.01.040 URL

[59]Mcphee W A G, Boucher M, Stuart J , et al. Demonstration of a liquid-tin anode solid-oxide fuel cell (LTA-SOFC) operating from biodiesel fuel[J]. Energy & Fuels, 2009,23(5):5036-5041.


[60] Quang-Tuyen T, Kaida T, Sakamoto M , et al. Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell[J]. Journal of Power Sources, 2015,283:320-327.
doi: 10.1016/j.jpowsour.2015.02.116 URL

[61] Tran Q T, Shiratori Y, Sasaki K . Feasibility of palm-bio-diesel fuel for a direct internal reforming solid oxide fuel cell[J]. International Journal of Energy Research, 2013,37(6):609-616.

[62] Dupeyrat C B, Valderrama G, Alexander M J , et al. Pulse study of CO2 reforming of methane over LaNiO3[J]. Applied Catalysis A: General, 2003,248(1/2):143-151.

[63] Ponce S, Peña M A, Fierro J L G . Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites[J]. Applied Catalysis B: Environmental, 2000,24(3):193-205.
doi: 10.1016/S0926-3373(99)00111-3 URL

[64] Royer S, Duprez D, Can F , et al. Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality[J]. Chemical Reviews, 2014,114(20):10292-10368.
doi: 10.1021/cr500032a URL

[65] Zhu J J, Li H L, Zhong L Y , et al. Perovskite oxides: pre-paration, characterizations, and applications in heterogeneous catalysis[J]. ACS Catalysis, 2014,4(9):2917-2940.

[66] Cohen, Ronald E . Origin of ferroelectricity in perovskite oxides[J]. Nature, 1992,358(6382):136-138.

[67] Rajeswari M, Chen C H, Goyal A , et al. Low-frequency optical response in epitaxial thin films of La0.67Ca0.33MnO3 exhibiting colossal magnetoresistance[J]. Applied Physics Letters, 1996,68(25):3555-3557.

[68] Yajima T, Kazeoka H, Yogo T , et al. Proton conduction in sintered oxides based on CaZrO3[J]. Solid State Ionics, 1991,47(3/4):271-275.

[69] Ibarra J, Várez A, León C , et al. Influence of composition on the structure and conductivity of the fast ionic conductors La2/3-xLi3xTiO3 (0.03≤x≤0.167)[J]. Solid State Ionics, 2000,134(3/4):219-228.

[70] Huang K Q, Tichy R, Goodenough J B , et al. Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: III, Performance tests of single ceramic fuel cells[J]. Journal of the American Ceramic Society, 1998,81(10):2581-2585.

[71] Yang X F, Wei T, Chi B , et al. Lanthanum manganite-based perovskite as a catalyst for co-production of ethylene and hydrogen by ethane dehydrogenation[J]. Journal of Catalysis, 2019,377:629-637.

[72] Irvine J T S, Neagu D, Verbraeken M C , et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nature Energy, 2016,1(1):15014.

[73] Vaidya P D, Rodrigues A E . Insight into steam reforming of ethanol to produce hydrogen for fuel cells[J]. Chemical Engineering Journal, 2006,117:39-49.

[74] Li N Q, Pu J, Chi B , et al. Ethanol steam reforming with a Ni/BaZr0.1Ce0.7 Y0.1Yb0.1O3-δ catalyst[J]. Materials Today Energy, 2019,12:371-378.

[75] Wei T, Jia L C, Zheng H Y , et al. LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4[J]. Applied Catalysis A: General, 2018,564:199-207.
doi: 10.1016/j.apcata.2018.07.031 URL

[76] Germán S G, Catherine B D, Joël B , et al. Dual active-site mechanism for dry methane reforming over Ni/La2O3 produced from LaNiO3 perovskite[J]. Industrial & Engineering Chemistry Research, 2008,47(23):9272-9278.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.