Abstract
Electro-catalytic reduction is an efficient way to achieve resourcable transformation of CO2, which is one of the important techniques to solve the global environmental problems originated from excessive CO2 emission. In this study, a membrane electrode assembly(MEA) type CO2 electro-reduction electrolytic cell was constucted, which enables CO2 feeding and real-time KHCO3 aqueous updating on both sides of the cathode gas diffusion electrode (GDE). By means of the electrolytic cell, effects of KHCO3 concentration and updating inside the liquid electrolytic chamber on CO2 electro-reduction activity, production distribution and stability were investigated. The experimental results suggested that the KHCO3 concentration exerted strong influence on the cell voltage rather than the production distribution for the current densities lower than 5 mA·cm-2. The performance of MEA type CO2 electro-reduction cell decayed in both “reversible” and “irreversible” ways. Catalysts leaking at the GDE/liquid electrolyte interface might be respossible for the cell “irreversible” decay. Meanwhile, th leakage of KHCO3 aqueous electrolyte arose from gas accumulation in the liquid electrolytic chamber contributed to the “reversible” degradation, which could be recovered effectively by updating the KHCO3 aqueous electrolyte.
Graphical Abstract
Keywords
CO2 electro-reduction, membrane electrode assembly, electrolytic cell, stability
Publication Date
2020-06-28
Online Available Date
2019-04-12
Revised Date
2019-04-08
Received Date
2019-03-05
Recommended Citation
Qing MAO, Bing-yu LI, Wei-yun JING, Jian ZHAO, Song LIU, Yan-qiang HUANG, Zhao-long DU.
Stability Studies for a Membrane Electrode Assembly Type CO2 Electro-Reduction Electrolytic Cell[J]. Journal of Electrochemistry,
2020
,
26(3): 359-369.
DOI: 10.13208/j.electrochem.190305
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol26/iss3/11
References
[1] Jing W Y( 景维云), Mao Q( 毛庆), Shi Y( 石越), et al. Research progress of electro-catalytic reduction of CO2 to hydrocarbons[J]. Chemical Industry and Engineering Progressl( 化工进展), 2017,36(6):2150-2157.
[2] Wang F Y( 王付燕), Sun H Z( 孙洪志), Song M X( 孙洪志), et al. Research progress of ammoniation reaction of carbon dioxide[J]. Chemical Industry and Engineering Progressl( 化工进展), 2014,33(1):209-212.
[3] Zhao D( 赵丹), Wang Wen Z( 王文珍), Jia X G( 贾新刚), et al. Progress in synjournal of organic carbonates and polycarbonates from carbon dioxide[J]. Modern Chemical Industryl( 现代化工). 2015,35(7):32-36.
[4] Yu Y M( 于英民). Supercritical carbon dioxide catalytic hydrogenation to formic acid on the immobilized ruthenium catalyst[D]. Zhejiang Universityl( 浙江大学), 2006.
[5] Niu L( 牛量), Yu T( 于涛), Zhang X( 张晓), et al. Research process in catalysts for carbon dioxide reforming of methane to synjournal gas[J]. Journal of Jilin Institute of Chemical Technologyl( 吉林化工学院学报), 2018,35(11):8-13.
[6]
Liu R, Tian H F, Yang A M, et al. Preparation of HZSM-5 membrane packed CuO-ZnO-Al2O3 nanoparticles for catalysing carbon dioxide hydrogenation to dimethyl ether[J]. Applied Surface Science, 2015,345:1-9.
doi: 10.1016/j.apsusc.2015.03.125
URL
[7]
Lingampalli S R, Monis Ayyub M, Magesh G, et al. Photocatalytic reduction of CO2 by employing Zno/Ag1-X CuX/Cds and related heterostructures[J]. Chemical Physics Letters, 2018,691:28-32.
doi: 10.1016/j.cplett.2017.10.048
URL
[8]
Byoungsu K, Sichao M, Huei-Ru M J, et al. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer[J]. Electrochimica Acta, 2015,166:271-276.
doi: 10.1016/j.electacta.2015.03.064
URL
[9]
Li B, Niu W, Cheng Y, et al. Preparation of Cu2O modified TiO2, nanopowder and its application to the visible light photoelectrocatalytic reduction of CO2 to CH3OH[J]. Chemical Physics Letters, 2018,700:57-63.
doi: 10.1016/j.cplett.2018.03.049
URL
[10]
He J F, Johnson N J J, Huang A X. Electrocatalytic alloys for CO2 reduction[J]. ChemSusChem, 2018,11(1):48-57.
doi: 10.1002/cssc.201701825
URL
pmid: 29205925
[11]
Wen G B, Li D U, Ren B H, et al. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production[J]. Advanced Energy Materials, 2018,8(31):1802427.
doi: 10.1002/aenm.v8.31
URL
[12]
Saberi S T, Mepham A, Zheng X, et al. High-density nanosharp microstructures enable efficient CO2, electroreduction[J]. Nano Letters, 2016,16(11):7224-7228.
URL
pmid: 27736080
[13]
Yang H B, Hung S, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction[J]. Nature Energy, 2018,3(2):140-147.
doi: 10.1038/s41560-017-0078-8
URL
[14]
Yang W F, Ma W S, Zhang Z H, et al. Ligament size-dependent electrocatalytic activity of nanoporous Ag network for CO2 reduction[J]. Faraday Discussions, 2018,210:289-299.
doi: 10.1039/c8fd00056e
URL
pmid: 29974912
[15]
Rasul S, Anjum D H, Jedidi A, et al. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO[J]. Angewandte Chemie International Edition, 2015,54(7):2146-2150.
doi: 10.1002/anie.201410233
URL
pmid: 25537315
[16]
Mao Q, Sun G Q, Wang S L, et al. Comparative studies of configurations and preparation methods for direct methanol fuel cell electrodes[J]. Electrochimica Acta, 2007,52(24):6763-770.
doi: 10.1016/j.electacta.2007.04.120
URL
[17]
Carmo M, Fritz D L, Merge J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013,38(12):4901-4934.
doi: 10.1016/j.ijhydene.2013.01.151
URL
[18] Delacourt C, Ridgway P L, Kerr J B, et al. Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature[J]. Journal of The Electrochemical Society . 2008,155(1):B42-B49.
[19]
Delacourt C, Newman J. Mathematical modeling of CO2 reduction to CO in aqueous electrolytes II. Study of an electrolysis cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature[J]. Journal of The Electrochemical Society . 2010,157(12):B1911-B1926.
doi: 10.1149/1.3502533
URL
[20] Lee W, Kim Y E, Youn M H, et al. Catholyte-free electrocatalytic CO2 reduction into formate[J]. Angewandte Chemie International Edition, 2018,57(22):6883-6887.
[21]
Subramanian K, Asokan K, Jeevarathinam D, et al. Electrochemical membrane reactor for the reduction of carbondioxide to formate[J]. Journal of Applied Electrochemistry. 2007,37(2):255-260.
doi: 10.1007/s10800-006-9252-6
URL
[22]
Innocent B, Liaigre D, Pasquier D, et al. Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium[J]. Journal of Applied Electrochemistry. 2009,39(2):227-232.
doi: 10.1007/s10800-008-9658-4
URL
[23]
Wu J, Risalvato F G, Ke F, et al. Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the horiivity and activity with Sn electrode[J]. Journal of The Electrochemical Society, 2012,159(7):F353-F359.
doi: 10.1149/2.049207jes
URL
[24]
Wu J, Risalvato F G, Sharma P P, et al. Electrochemical reduction of carbon dioxide II. Design, assembly, and performance of low temperature full electrochemical cells[J]. Journal of The Electrochemical Society, 2013,160(9):F953-F957.
doi: 10.1149/2.030309jes
URL
[25]
Wu J, Risalvato F G, Ma S, et al. Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell[J]. Journal of Materials Chemistry A, 2014,2(6):1647-1651.
doi: 10.1039/c3ta13544f
URL
[26]
Alves V A, Da Silva L A, Boodts J. Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and faradaic impedance investigation of the oxygen evolution reaction from alkaline solution[J]. Electrochimica Acta, 1998,44(8/9):1525-1534.
doi: 10.1016/S0013-4686(98)00276-X
URL
[27]
Zhong H, Fujii K, Nakano Y. Effect of KHCO3 concentration on electrochemical reduction of CO2 on copper electrode[J]. Journal of The Electrochemical Society, 2017,164(9):F923-F927.
doi: 10.1149/2.0601709jes
URL
[28] Hashiba H, Weng C, Chen Y, et al. Effects of electrolyte buffer capacity on surface reactant species and reaction rate of CO2 in electrochemical CO2 reduction[J]. Journal of Physical Chemistry C, 2018,122(7):3719-3726.
[29] Murata A, Hori Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode[J]. Bulletin of the Chemical Society of Japan, 2006,64(1):123-127.
[30] Hori Y, Murata A, Takahashi R. Cheminform abstract: formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. ChemInform, 1990,21(2):2309-2326.
[31] Hori Y. Electrochemical CO2 reduction on metal electrodes[M]. Modern Aspects of Electrochemistry, 2008,42:89-189.
[32] Büchi F N, Inaba M, Schmidt T J. Polymer electrolyte fuel cell durability[M]. New York, Springer, 2009: 235.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons