Abstract
In this paper, the copper interconnection technology in chip manufacturing is introduced in detail, and the essentials of acidic copper sulfate electroplating process and the mechanisms of common-used additives are reviewed. The progresses of novel additives at home and abroad are also summarized. Based on the studied achievement, the possibility of the novel copper interconnect process replacing the acidic copper electroplating is prospected.
Graphical Abstract
Keywords
chips, copper interconnection, acidic copper sulfate electroplating, additives
Publication Date
2020-08-28
Online Available Date
2020-03-10
Revised Date
2020-03-09
Received Date
2020-02-12
Recommended Citation
Lei JIN, Jia-qiang YANG, Fang-zu YANG, Dong-ping ZHAN, Zhong-qun TIAN, Shao-min ZHOU.
Research Progresses of Copper Interconnection in Chips[J]. Journal of Electrochemistry,
2020
,
26(4): 521-530.
DOI: 10.13208/j.electrochem.200212
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol26/iss4/11
References
[1] Liu Y, Han Y T, Zhang J H, et al. Electroless grafting of polymer insulation layers in through-silicon vias[J]. ECS Journal of Solid State Science and Technology, 2019,8(10):P591-P595.
[2] Zeng S H (曾绍海), Lin H (林宏), Chen Z F (陈张发), et al. A study on the electroplating additives in dual damascene structure for 55nm technology node[J]. Journal of Fudan University(Natural Science) (复旦学报(自然科学版)), 2018,57(4):504-516.
[3] Xiao H B, Wang F L, Wang Y, et al. Effect of ultrasound on copper filling of high aspect ratio through-silicon via (TSV)[J]. Journal of The Electrochemical Society, 2017,164(4):D126-D129.
[4]
Sung M, Yoon Y, Hong J, et al. Bromide ion as a leveler for high-speed TSV filling[J]. Journal of The Electrochemical Society, 2019,166(13):D546-D550.
doi: 10.1149/2.0181913jes
URL
[5] Wang F L, Zhang Q L, Zhou K L, et al. Effect of cetyl-trimethyl-ammonium-bromide (CTAB) and bis(3-sulfopropyl)disulfide (SPS) on the through-silicon-via (TSV) copper filling[J]. Microelectronic Engineering, 2019,217:111109.
[6] Liu L F (刘林发). Effect of additive concentration on coating performance of chip copper interconnection plating[J]. Application of IC (集成电路应用), 2019,36(6):25-30.
[7] Wang F L, Zhang Q L, Liu W, et al. Interaction effect of suppressor concentration and current density on the copper deposition rate in TSV filling process[J]. Microelectronic Engineering, 2019,216:111022.
[8] Wang F, Zhao Z P, Nie N T, et al. Effect of via depth on the TSV filling process for different current densities[J]. Journal of Micromechanics and Microengineering, 2018,28(4):045004.
[9] Wang F L, Zeng P, Wang Y, et al. High-speed and high-quality TSV filling with the direct ultrasonic agitation for copper electrodeposition[J]. Microelectronic Engineering, 2017,180, 30-34.
[10] Hoang V H, Kondo K. Communication-conical TSV filling within 30 seconds[J]. Journal of The Electrochemical Society, 2017,164(12):D795-D797.
[11] Rao C, Wang T Q Wang J, et al. Improvement of via dishing and non-uniformity in TSV chemical mechanical planarization[J]. Microelectronic Engineering, 2016,151:38-46.
[12] Kim M J, Kim H C, Kim J J. The Influences of iodide ion on Cu electrodeposition and TSV filling[J]. Journal of The Electrochemical Society, 2016,163(8):D434-D441.
[13] Kim M J, Seo Y, Oh J H, et al. Communication-halide ions in TEG-based levelers affecting TSV filling performance[J]. Journal of The Electrochemical Society, 2016,163(5):D185-D187.
[14] Feng X, Hang T, Li M. The influence of annealing on characteristics of copper in TSV[J]. ECS Journal of Solid State Science and Technology, 2015,4(12):P451-P455.
[15] Kim M J, Seo Y, Kim H C, et al. Galvanostatic bottom-up filling of TSV-like trenches: Choline-based leveler containing two quaternary ammoniums[J]. Electrochimica Acta, 2015,163:174-181.
[16] Kim H C, Kim M J, Seo Y, et al. BOTTOM-UP FILLing of TSV-scaled trenches by using step current electrodeposition[J]. ECS Electrochemistry Letters, 2015,4(10):D31-D34.
[17]
Kondo K, Yamada Y, Yokoi M. TSV fillings and electrochemical measurements of the dialyl-amine additive with Cl- and Br-[J]. Journal of The Electrochemical Society, 2015,162(8):D397-D400.
doi: 10.1149/2.1011508jes
URL
[18]
Mun K Y, Hong T E, Cheon T, et al. The effects of nitrogen incorporation on the properties of atomic layer deposited Ru thin films as a direct-plateable diffusion barrier for Cu interconnect[J]. Thin Solid Films, 2014,562:118-125.
doi: 10.1016/j.tsf.2014.03.088
URL
[19]
Kim M J, Choe S, Kim H C, et al. Cu direct electrodeposition using step current for superfilling on Ru-Al2O3 layer[J]. Electrochimica Acta, 2014,147:371-379.
doi: 10.1016/j.electacta.2014.09.142
URL
[20]
Lee J S, Choi S H, Yun S J, et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation[J]. Science, 2018,362(6416):817-821.
doi: 10.1126/science.aau2132
URL
pmid: 30442807
[21]
Hai N T, Furrer J, Barletta E, et al. Copolymers of imidazole and 1,4-butandiol diglycidyl ether as an efficient suppressor additive for copper electroplating[J]. Journal of The Electrochemical Society, 2014,161(9):D381-D387.
doi: 10.1149/2.0111409jes
URL
[22]
Nagy Z, Blaudeau J P, Hung N C, et al. Chloride-ion catalysis of the copper deposition reaction[J]. Journal of The Electrochemical Society, 1995,142(6):L87-L89.
doi: 10.1149/1.2044254
URL
[23] Yokoi M, Konishi S, Hayashi T. Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper-sulfate bath[J]. Denki Kagaku, 1984,52(4):218-223.
[24]
Rooney R T, Jha H, Rohde D, et al. Suppression of copper electrodeposition by PEG in methanesulfonic acid electrolytes[J]. Journal of The Electrochemical Society. 2019,166(13):D551-D558.
doi: 10.1149/2.0171913jes
URL
[25] Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: A surface-enhanced Raman study[J]. Journal of Physical Chemistry B, 2003,107(35):9415-9423.
[26]
Dow W P, Yen M Y, Lin W B, et al. Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating[J]. Journal of The Electrochemical Society, 2005,152(11):C769-C775.
doi: 10.1149/1.2052019
URL
[27] Dow W P, Huang H S, Yen M Y, et al. Roles of chloride ion in microvia filling by copper electrodeposition - II. Studies using EPR and galvanostatic measurements[J]. Journal of The Electrochemical Society, 2005,152(2):C77-C88.
[28] Bozzini B, Durzo L, Romanello V, et al. Electrodeposition of Cu from acidic sulfate solutions in the presence of bis-(3-sulfopropyl)-disulfide (SPS) and chloride ions[J]. Journal of The Electrochemical Society, 2006,153(4):C254-C257.
[29] Dow W P, Chiu Y D, Yen M Y. Publisher’s note: microvia filling by Cu electroplating over a Au seed layer modified by a disulfide[J. Electrochem. Soc., 156, D155 (2009)][J]. Journal of The Electrochemical Society, 2009,156(6):S7-S7.
[30] Dow W P (窦维平). Applications of microvia and through hole filling by copper electroplating[J]. Journal of Fudan University(Natural Science) (复旦学报(自然科学版)), 2012,51(2):132-138.
[31] Li Y B, Wang W, Li Y L. Adsorption behavior and related mechanism of janus green B during copper via-filling process[J]. Journal of The Electrochemical Society, 2009,156(4):D119-D124.
[32] Bozzini B, Mele C, Durzo L, et al. An electrochemical and in situ SERS study of Cu electrodeposition from acidic sulphate solutions in the presence of 3-diethylamino-7-(4-dimethylaminophenylazo)-5-phenylphenazinium chloride (Janus Green B)[J]. Journal of Applied Electrochemistry, 2006,36(9):973-981.
[33] Dinh V Q, Kondo K, Hoang V H, et al. Communication-bottom-Up TSV filling using sulfonated diallyl dimethyl ammonium bromide copolymer as a leveler[J]. Journal of The Electrochemical Society, 2019,166(12):D505-D507.
[34]
Chen B A, Xu J, Wang L M, et al. Synjournal of quaternary ammonium salts based on diketopyrrolopyrroles skeletons and their applications in copper electroplating[J]. ACS Applied Materials & Interfaces, 2017,9(8):7793-7803.
doi: 10.1021/acsami.6b15400
URL
pmid: 28139918
[35] Haba T, Ikeda K, Uosaki K. Electrochemical and in situ SERS study of the role of an inhibiting additive in selective electrodeposition of copper in sulfuric acid[J]. Electrochemistry Communications, 2019,98:19-22.
[36] Kim H C, Kim M J, Kim J J. Communication-acceleration of TSV filling by adding thiourea to PEG-PPG-SPS-I-[J]. Journal of The Electrochemical Society, 2018,165(3):D91-D93.
[37] Cao H Y, Hang T, Ling H Q, et al. Behaviors of chloride ions in methanesulfonic acid bath for copper electrodeposition of through-silicon-via[J]. Journal of The Electrochemical Society, 2013,160(4):D146-D149.
[38] Wu W G (吴伟刚), Yang F Z (杨防祖), Luo M H (骆明辉), et al. Electrodeposition of copper in a citrate bath and its application to a micro-electro-mechanical system[J]. Acta Physico - Chimica Sinica (物理化学学报), 2010,26(10):2625-2632.
[39] Yang F Z (杨防祖), Wu W G (吴伟刚), Tian Z Q (田中群), et al. Application of copper electrochemical deposition for the metallization of micropores[J]. Acta Physico -Chimica Sinica (物理化学学报), 2011,27(9):2135-2140.
Included in
Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Semiconductor and Optical Materials Commons