•  
  •  
 

Corresponding Author

Jin-li QIAO(qiaojl@dhu.edu.cn)

Abstract

Zinc-air battery has attracted great attention from researchers due to its high energy density and power density, which is expected to be widely used in energy conversion and storage. Air electrode as the core area of oxygen catalytic reaction is the focus of the entire zinc-air battery research. Recently, many research achievements have been made in non-noble metal bifunctional catalysts/electrodes with high activity, low cost and abundant species. In this review, we mainly focus on the reaction mechanism and the recent progress in non-noble metal oxide catalyst, carbon-based catalyst, and carbon-based transition metal compound composite and self-supporting electrode. In addition, the construction strategy of designing high-efficient bifunctional catalyst is put forward, and the prospects of the future development trends are expected.

Graphical Abstract

Keywords

zinc-air batteries, oxygen reduction reaction, oxygen evolution reaction, bifunctional catalysts

Publication Date

2020-08-28

Online Available Date

2020-06-04

Revised Date

2020-05-28

Received Date

2020-05-24

References

[1]Cheng F Y, Chen J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012,41(6):2172-2192.
URL pmid: 22254234

[2]Li Y G, Dai H J. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014,43(15):5257-5275.
URL pmid: 24926965

[3]Lin M C, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015,520(7547):325-328.
doi: 10.1038/nature14340 URL pmid: 25849777

[4]Park M, Ryu J, Wang W, et al. Material design and engineering of next-generation flow-battery technologies[J]. Nature Reviews Materials, 2017,2(1):16080.

[5]Li S S (李升宪), Zhou G M (周贵茂), Ai X P (艾新平), et al. A study on the cylindrical zinc-air battery[J]. Journal of Electrochemistry (电化学), 2000,6(3):341-344.

[6]Fu J, Cano Z P, Park M G, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Advanced Materials, 2017,29(7):1604685.
doi: 10.1002/adma.201604685 URL

[7]Bidault F, Brett D J L, Middleton P H, et al. Review of gas diffusion cathodes for alkaline fuel cells[J]. Journal of Power Sources, 2009,187(1):39-48.
doi: 10.1016/j.jpowsour.2008.10.106 URL

[8]Perry M L, Fuller T F. A historical perspective of fuel cell technology in the 20th century[J]. Journal of The Electrochemical Society, 2002,149(7):S59-S67.
doi: 10.1149/1.1488651 URL

[9]Tang Q W, Wang L M, Wu M J, et al. Achieving high-powered Zn/air fuel cell through N and S co-doped hierarchically porous carbons with tunable active-sites as oxygen electrocatalysts[J]. Journal of Power Sources, 2017,365:348-353.
doi: 10.1016/j.jpowsour.2017.08.102 URL

[10]Mohamad A A. Zn/gelled 6M KOH/O2 zinc-air battery[J]. Journal of Power Sources, 2006,159(1):752-757.
doi: 10.1016/j.jpowsour.2005.10.110 URL

[11]Neburchilov V, Wang H, Martin J J, et al. A review on air cathodes for zinc-air fuel cells[J]. Journal of Power Sources, 2010,195(5):1271-1291.
doi: 10.1016/j.jpowsour.2009.08.100 URL

[12]Xu M, Ivey D G, Xie Z, et al. Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement[J]. Journal of Power Sources, 2015,283:358-371.
doi: 10.1016/j.jpowsour.2015.02.114 URL

[13]Cao R, Lee J S, Liu M, et al. Recent progress in non-precious catalysts for metal-air batteries[J]. Advanced Energy Materials, 2012,2(7):816-829.
doi: 10.1002/aenm.201200013 URL

[14]Trunov A. Analysis of oxygen reduction reaction pathways on Co3O4, NiCO2O4, Co3O4-Li2O, NiO, NiO-Li2O, Pt, and Au electrodes in alkaline medium[J]. Electrochi-mica Acta, 2013,105:506-513.

[15]Kleiman-Shwarsctein A, Hu Y S, Stucky G D, et al. NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes[J]. Electrochemistry Communications, 2009,11(6):1150-1153.
doi: 10.1016/j.elecom.2009.03.034 URL

[16]Peng L S, Shah S S A, Wei Z D, Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction[J]. Chinese Journal of Catalysis, 2018,39(10):1575-1593.
doi: 10.1016/S1872-2067(18)63130-4 URL

[17]Zhao F M (赵峰鸣), Ma C A (马淳安). Electrocatalytic performances of carbon nanotube air electrode for oxygen reduction[J]. Journal of Electrochemistry (电化学), 2004,10(4):384-390.

[18]Wang K L, Pei P C, Wang Y C, et al. Advanced rechargeable zinc-air battery with parameter optimization[J]. Applied Energy, 2018,225:848-856.
doi: 10.1016/j.apenergy.2018.05.071 URL

[19]Tan P, Chen B, Xu H R, et al. Flexible Zn- and Li-air batteries: recent advances, challenges, and future perspectives[J]. Energy Environmental Science, 2017,10(10):2056-2080.
doi: 10.1039/C7EE01913K URL

[20]Goh F W T, Liu Z, Ge X, et al. Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc-air battery[J]. Electrochimica Acta, 2013,114:598-604.
doi: 10.1016/j.electacta.2013.10.116 URL

[21]Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials[J]. ACS Catalysis, 2012,2(8):1765-1772.
doi: 10.1021/cs3003098 URL

[22]Sung M, Kim J. Oxygen evolution reaction on Pt sphere and Ir-modified Pt sphere electrodes with porous structures[J]. International Journal of Hydrogen Energy, 2018,43(4):2130-2138.
doi: 10.1016/j.ijhydene.2017.11.167 URL

[23]Jia Q, Caldwell K, Ziegelbauer J M, et al. The role of OOH binding site and Pt surface structure on ORR activities[J]. Journal of The Electrochemical Society, 2014,161(14):F1323-F1329.
doi: 10.1149/2.1071412jes URL pmid: 26190857

[24]Zinola C F, Arvia A J, Estiu G L, et al. A quantum chemical approach to the influence of platinum surface structure on the oxygen electroreduction reaction[J]. The Journal of Physical Chemistry, 1994,98(31):7566-7576.
doi: 10.1021/j100082a030 URL

[25]Spendelow J S, Wieckowski A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media[J]. Physical Chemistry Chemical Physics, 2007,9(21):2654-2675.
doi: 10.1039/b703315j URL pmid: 17627310

[26]Su H Y, Gorlin Y, Man I C, et al. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis[J]. Physical Chemistry Chemical Physics, 2012,14(40):14010-14022.
doi: 10.1039/c2cp40841d URL pmid: 22990481

[27]Lee D U, Xu P, Cano Z P, et al. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries[J]. Journal of Ma-terials Chemistry A, 2016,4(19):7107-7134.

[28]Liang Y Y, Li Y G, Wang H L, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Material, 2011,10(10):780-786.
doi: 10.1038/nmat3087 URL

[29]Suntivich J, Gasteiger H A, Yabuuchi N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011,3(7):546-550.
URL pmid: 21697876

[30]Seo M H, Park H W, Lee D U, et al. Design of highly active perovskite oxides for oxygen evolution reaction by combining experimental and ab initio studies[J]. ACS Catalysis, 2015,5(7):4337-4344.
doi: 10.1021/acscatal.5b00114 URL

[31]Anantharaj S, Ede S R, Sakthikumar K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review[J]. ACS Catalysis, 2016,6(12):8069-8097.
doi: 10.1021/acscatal.6b02479 URL

[32]Chakthranont P, Kibsgaard J, Gallo A, et al. Effects of gold substrates on the intrinsic and extrinsic activity of high-loading nickel-based oxyhydroxide oxygen evolution catalysts[J]. ACS Catalysis, 2017,7(8):5399-5409.
doi: 10.1021/acscatal.7b01070 URL

[33]Fabbri E, Habereder A, Waltar K, et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catalysis Science & Technology, 2014,4(11):3800-3821.

[34]Jörissen L. Bifunctional oxygen/air electrodes[J]. Journal of Power Sources, 2006,155(1):23-32.
doi: 10.1016/j.jpowsour.2005.07.038 URL

[35]Kuang M, Wang Q, Ge H, et al. CuCoOx/FeOOH core-shell nanowires as an efficient bifunctional oxygen evolution and reduction catalyst[J]. ACS Energy Letters, 2017,2(10):2498-2505.

[36]Yu L, Yang J F, Guan B Y, et al. Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution[J]. Angewandte Chemie International Edition, 2018,57(1):172-176.
doi: 10.1002/anie.201710877 URL pmid: 29178355

[37]Ge X, Liu Y, Goh F W, et al. Dual-phase spinel MnCO2O4 and spinel MnCO2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution[J]. ACS Applied Materials Interfaces, 2014,6(15):12684-12691.
doi: 10.1021/am502675c URL pmid: 25058393

[38]He X B, Yin F X, Li Y H, et al. NiMnO3/NiMn2O4 oxides synthesized via the aid of pollen: ilmenite/spinel hybrid nanoparticles for highly efficient bifunctional oxygen electrocatalysis[J]. ACS Applied Materials Interfaces, 2016,8(40):26740-26757.
doi: 10.1021/acsami.6b08101 URL pmid: 27644111

[39]Luo Z S, Marti-Sanchez S, Nafria R, et al. Fe3O4@NiFexOy nanoparticles with enhanced electrocatalytic properties for oxygen evolution in carbonate electrolyte[J]. ACS Applied Materials Interfaces, 2016,8(43):29461-29469.
doi: 10.1021/acsami.6b09888 URL pmid: 27730808

[40]Gebremariam T T, Chen F, Wang Q, et al. Bimetallic Mn-Co oxide nanoparticles anchored on carbon nanofibers wrapped in nitrogen-doped carbon for application in Zn-Air batteries and supercapacitors[J]. ACS Applied Energy Materials, 2018,1(4):1612-1625.
doi: 10.1021/acsaem.8b00067 URL

[41]Li L Q, Yang J, Yang H B, et al. Anchoring Mn3O4 nano-particles on oxygen functionalized carbon nanotubes as bifunctional catalyst for rechargeable zinc-air battery[J]. ACS Applied Energy Materials, 2018,1(3):963-969.

[42]Gao G, Wu H B, Dong B, et al. Growth of ultrathin ZnCO2O4 nanosheets on reduced graphene oxide with enhanced lithium storage properties[J]. Advanced Science, 2015,2(1/2):1400014.

[43]Wang Z J, Zhang F, Jin C, et al. La2O3-NCNTs hybrids in-situ derived from LaNi0.9Fe0.1O3-C composites as novel robust bifunctional oxygen electrocatalysts[J]. Carbon, 2017,115:261-270.

[44]Moni P, Hyun S, Vignesh A, et al. Chrysanthemum flower-like NiCO2O4-nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium-oxygen and zinc-air batteries[J]. Chemical Communications, 2017,53(55):7836-7839.
doi: 10.1039/c7cc03826g URL pmid: 28653704

[45]Li X, Zhu A L, Qu W, et al. Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries[J]. Electrochimica Acta, 2010,55(20):5891-5898.

[46]Ma C Y, Xu N N, Qiao J L, et al. Facile synjournal of NiCO2O4 nanosphere-carbon nanotubes hybrid as an efficient bifunctional electrocatalyst for rechargeable Zn-air batteries[J]. International Journal of Hydrogen Energy, 2016,41(21):9211-9218.

[47]Xiao J W, Wan L, Wang X, et al. Mesoporous Mn3O4-CoO core-shell spheres wrapped by carbon nanotubes: a high performance catalyst for the oxygen reduction reaction and CO oxidation[J]. Journal of Materials Chemistry A, 2014,2(11):3794-3800.
doi: 10.1039/c3ta14453d URL

[48]He Y, Zhang J F, He G W, et al. Ultrathin Co3O4 nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc-air batteries[J]. Nanoscale, 2017,9(25):8623-8630.
URL pmid: 28608902

[49]Davari E, Ivey D G. Bifunctional electrocatalysts for Zn-air batteries[J]. Sustainable Energy & Fuels, 2018,2(1):39-67.

[50]Jiang H, Dai Y H, Hu Y J, et al. Nanostructured ternary nanocomposite of rGO/CNTs/MnO2 for high-rate supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2013,2(1):70-74.

[51]Débart A, Paterson A J, Bao J, et al. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries[J]. Angewandte Chemie, 2008,120(24):4597-4600.
doi: 10.1002/(ISSN)1521-3757 URL

[52]Wu M S. Electrochemical capacitance from manganese oxide nanowire structure synthesized by cyclic voltammetric electrodeposition[J]. Applied Physics Letters, 2005,87(15):153102.

[53]Chen Z, Yu A P, Ahmed R, et al. Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery[J]. Electrochimica Acta, 2012,69:295-300.

[54]Huang Y J, Lin Y L, Li W S. Controllable syntheses of α- and δ-MnO2 as cathode catalysts for zinc-air battery[J]. Electrochimica Acta, 2013,99:161-165.

[55]Jiang M, He H, Huang C, et al. α-MnO2 nanowires/graphene composites with high electrocatalytic activity for Mg-air fuel cell[J]. Electrochimica Acta, 2016,219:492-501.

[56]Zeng Z, Zhang W D, Liu Y Y, et al. Uniformly electrodeposited α-MnO2 film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction[J]. Electrochimica Acta, 2017,256:232-240.

[57]Choi H A, Jang H, Hwang H, et al. Synjournal and characterization of different MnO2 morphologies for lithium-air batteries[J]. Electronic Materials Letters, 2014,10(5):957-962.

[58]Cao Y, Wei Z K, He J, et al. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance[J]. Energy Environmental Science, 2012,5(12):9765-9768.

>

[59] Saputra E, Muhammad S, Sun H, et al. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation[J]. Environmental Science and Technology, 2013,47(11):5882-5887.
doi: 10.1021/es400878c URL pmid: 23651050

[60] Li G, Mezaal M A, Zhang R, et al. Electrochemical performance of MnO2-based air cathodes for zinc-air batteries[J]. Fuel Cells, 2016,16(3):395-400.

[61] Selvakumar K, Senthil Kumar S M, Thangamuthu R, et al. Development of shape-engineered α-MnO2 materials as bi-functional catalysts for oxygen evolution reaction and oxygen reduction reaction in alkaline medium[J]. International Journal of Hydrogen Energy, 2014,39(36):21024-21036.

[62] Cao Y L, Yang H X, Ai X P, et al. The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution[J]. Journal of Electroanalytical Chemistry, 2003,557:127-134.

[63] Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. Journal of Physical Chemistry C, 2008,112(11):4406-4417.

[64] Meng Y T, Song W Q, Huang H, et al. Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J]. Journal of the American Chemical Society, 2014,136(32):11452-11464.
doi: 10.1021/ja505186m URL pmid: 25058174

[65] Chen K, Wang M, Li G L, et al. Spherical α-MnO2 supported on N-KB as efficient electrocatalyst for oxygen reduction in Al-air battery[J]. Materials, 2018,11(4):601.

[66] Xiao W, Xia H, Fuh J Y H, et al. Electrophoretic-deposited CNT/MnO2 composites for high-power electrochemical energy storage/conversion applications[J]. Physica Scripta, 2010,T139:014008.

[67] Khalid S, Cao C, Naveed M, et al. 3D hierarchical MnO2 microspheres: a prospective material for high performance supercapacitors and lithium-ion batteries[J]. Sustainable Energy & Fuels, 2017,1(8):1795-1804.

[68] Gorlin Y, Jaramillo T F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation[J]. Journal of the American Chemical Society, 2010,132(39):13612-13614.
doi: 10.1021/ja104587v URL pmid: 20839797

[69] Mao L Q, Zhang D, Sotomura T, et al. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts[J]. Electrochimica Acta, 2003,48(8):1015-1021.

[70] Roche I, Chainet E, Chatenet M, et al. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: Physical characterizations and ORR mechanism[J]. Journal of Physical Chemistry C, 2007,111(3):1434-1443.

[71] Jiao F, Frei H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts[J]. Angewandte Chemie International Edition, 2009,48(10):1841-1844.
doi: 10.1002/anie.200805534 URL pmid: 19173364

[72] Jiao F, Frei H. Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts[J]. Chemical Communications, 2010,46(17):2920-2922.
doi: 10.1039/b921820c URL pmid: 20386823

[73] Kuo C H, Mosa I M, Thanneeru S, et al. Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions[J]. Chemical Communications, 2015,51(27):5951-5954.
doi: 10.1039/c5cc01152c URL pmid: 25736247

[74] Xu N N, Nie Q, Luo L Y Q, et al. Controllable hortensia-like MnO2 synergized with carbon nanotubes as an efficient electrocatalyst for long-term metal-air batteries[J]. ACS Applied Materials Interfaces, 2018,11(1):578-587.
doi: 10.1021/acsami.8b15047 URL pmid: 30525371

[75] Xiao J W, Kuang Q, Yang S H, et al. Surface structure dependent electrocatalytic activity of Co3O4 anchored on graphene sheets toward oxygen reduction reaction[J]. Scientific Reports, 2013,3:2300.
doi: 10.1038/srep02300 URL pmid: 23892418

[76] Yeo B S, Bell A T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen[J]. Journal of the American Chemical Society, 2011,133(14):5587-5593.
doi: 10.1021/ja200559j URL pmid: 21413705

[77] Mcalpin J G, Surendranath Y, Dincǎ M, et al. EPR evidence for Co(IV) species produced during water oxidation at neutral pH[J]. Journal of the American Chemical Society, 2010,132(20):6882-6883.
doi: 10.1021/ja1013344 URL pmid: 20433197

[78] Fayette M, Nelson A, Robinson R D. Electrophoretic deposition improves catalytic performance of Co3O4 nanoparticles for oxygen reduction/oxygen evolution reactions[J]. Journal of Materials Chemistry A, 2015,3(8):4274-4283.
doi: 10.1039/C4TA04189E URL

[79] Menezes P W, Indra A, Sahraie N R, et al. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions[J]. ChemSusChem, 2015,8(1):164-171.
doi: 10.1002/cssc.201402699 URL pmid: 25394186

[80] Sa Y J, Kwon K, Cheon J Y, et al. Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts[J]. Journal of Materials Chemistry A, 2013,1(34):9992-10001.
doi: 10.1039/c3ta11917c URL

[81] Lee D U, Scott J, Park H W, et al. Morphologically controlled Co3O4 nanodisks as practical bi-functional catalyst for rechargeable zinc-air battery applications[J]. Electrochemistry Communications, 2014,43:109-112.
doi: 10.1016/j.elecom.2014.03.020 URL

[82] RiOs E, Nguyen-Cong H, Marco J F, et al. Indirect oxidation of ethylene glycol by peroxide ions at Ni0.3CO2.7O4 spinel oxide thin film electrodes[J]. Electrochimica Acta, 2000,45(27):4431-4440.
doi: 10.1016/S0013-4686(00)00498-9 URL

[83] Tan Y, Wu C C, Lin H, et al. Insight the effect of surface Co cations on the electrocatalytic oxygen evolution properties of cobaltite spinels[J]. Electrochimica Acta, 2014,121:183-187.
doi: 10.1016/j.electacta.2013.12.128 URL

[84] Peng S J, Hu Y X, Li L L, et al. Controlled synjournal of porous spinel cobaltite core-shell microspheres as high-performance catalysts for rechargeable Li-O2 batteries[J]. Nano Energy, 2015,13:718-726.
doi: 10.1016/j.nanoen.2015.03.021 URL

[85] Li X, Pletcher D, Russell A E, et al. A novel bifunctional oxygen GDE for alkaline secondary batteries[J]. Electrochemistry Communications, 2013,34:228-230.
doi: 10.1016/j.elecom.2013.06.020 URL

[86] Zhao T T, Gadipelli S, He G J, et al. Tunable bifunctional activity of MnxCo3-xO4 nanocrystals decorated on carbon nanotubes for oxygen electrocatalysis[J]. ChemSusChem, 2018,11(8):1295-1304.
doi: 10.1002/cssc.201800049 URL pmid: 29443459

[87] Pletcher D, Li X, Price S W T, et al. Comparison of the spinels Co3O4 and NiCO2O4 as bifunctional oxygen catalysts in alkaline media[J]. Electrochimica Acta, 2016,188:286-293.
doi: 10.1016/j.electacta.2015.10.020 URL

[88] Liu Z Q, Xu Q Z, Wang J Y, et al. Facile hydrothermal synjournal of urchin-like NiCO2O4 spheres as efficient electrocatalysts for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2013,38(16):6657-6662.
doi: 10.1016/j.ijhydene.2013.03.092 URL

[89] Wang H, Song X H, Wang H Y, et al. Synjournal of hollow porous ZnCO2O4 microspheres as high-performance oxygen reduction reaction electrocatalyst[J]. International Journal of Hydrogen Energy, 2016,41(30):13024-13031.
doi: 10.1016/j.ijhydene.2016.05.046 URL

[90] Ji R L, Cao C B, Chen Z, et al. Solvothermal synjournal of CoxFe3-xO4 spheres and their microwave absorption properties[J]. Journal of Materials Chemistry C, 2014,2(29):5944-5953.
doi: 10.1039/c4tc00167b URL

[91] Du J, Pan Y D, Zhang T R, et al. Facile solvothermal synjournal of CaMn2O4 nanorods for electrochemical oxygen reduction[J]. Journal of Materials Chemistry A, 2012,22(31):15812-15818.

[92] Prabu M, Ketpang K, Shanmugam S. Hierarchical nanostructured NiCO2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries[J]. Nanoscale, 2014,6(6):3173-3181.
doi: 10.1039/c3nr05835b URL

[93] Wang D D, Chen X, Evans D G, et al. Well-dispersed Co3O4/CO2MnO4 nanocomposites as a synergistic bifunctional catalyst

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.