•  
  •  
 

Corresponding Author

Fang-yi CHENG(fycheng@nankai.edu.cn)

Abstract

Reduction of stable molecules such as CO2 and N2 is important process in electrochemical energy conversion and storage technologies for electrofuels production. However, for the inert nature of CO2/N2 molecule and competitive proton reduction in conventional aqueous electrolytes, selective electrochemical carbon/nitrogen fixation suffers from high overpotential, low reaction rate and low selectivity. While addressing these issues has witnessed substantial advances in electrocatalysts, much less attention has been placed on the electrolytes, which play an important role in regulating the local environment and thus the performance of catalysts under operating conditions. Rational design of electrolytes has received increasing interest to boost the activity and selectivity of stable molecule electrocatalysis. In this review, we overview recent progress in mechanistic understanding and strategies development in tailoring electrolytes for electrocatalytic CO2 and N2 reduction. We highlight the ion effect, local environment, and interface structure of electrocatalysts and electrolytes based on experimental and computational studies on representative examples. Particular discussion is provided on the effect of local pH modulation, electrolyte concentrating, selective ionic adsorption and nonaqueous electrolyte.

Graphical Abstract

Keywords

carbon dioxide reduction, nitrogen reduction, electrolyte, electrocatalysis

Publication Date

2020-08-28

Online Available Date

2020-06-28

Revised Date

2020-06-11

Received Date

2020-05-04

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.