Abstract
The electrochemical reduction of sulfur (S) takes place through multistep reactions when S is used as a cathode material. The complete discharge of S to form final product lithium sulfide (Li2S) is a two-electron reaction. The formation of low-order lithium polysulfides (LiPS) needs to overcome certain energy barriers. And the reduction of Li2S2 to Li2S is the rate-limited step. The reaction kinetic of sulfur cathode is the critical key to determine the electrochemical performance of Li-S batteries, such as specific energy, specific power and low temperature performance, etc. Accelerating the rate-limited step kinetics of sulfur cathodes can promote the conversion of soluble Li2S4 to insoluble Li2S2/Li2S, contributing to suppressed or eliminated “shuttle effect”. Recently, there are lots of transition metal oxides, sulfides, carbides, nitrides, phosphate, single atoms and redox electron mediators being applied in the preparations of sulfur cathodes, which improve the electrochemical performances and cycle stabilities. However, detailed mechanism of catalytic reaction is not completely clear. This review focuses on the functional and catalytic mechanisms of those metal compounds towards polysulfides, summarizes the recent research progress, and prospects the development and ongoing research of sulfur cathodes.
Graphical Abstract
Keywords
lithium-sulfur batteries, sulfur cathodes, catalytic conversions
Publication Date
2020-10-28
Online Available Date
2020-10-28
Revised Date
2020-09-08
Received Date
2020-08-03
Recommended Citation
Qin-jun SHAO, Jian CHEN.
Research Progress of Sulfur Cathode Catalytic Conversions for Lithium-Sulfur Batteries[J]. Journal of Electrochemistry,
2020
,
26(5): 694-715.
DOI: 10.13208/j.electrochem.200654
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol26/iss5/3
References
[1]Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011,11(1):19-29.
doi: 10.1038/nmat3191 URL pmid: 22169914
[2]Xu R, Lu J, Amine K. Progress in mechanistic understanding and characterization techniques of Li-S batteries[J]. Advanced Energy Materials, 2015,5(16):1500408.
[3]Zheng D, Wang G W, Liu D, et al. The progress of Li-S batteries-understanding of the sulfur redox mechanism: dissolved polysulfide ions in the electrolytes[J]. Advanced Materials Technologies, 2018,3(9):1700233.
doi: 10.1002/admt.201700233 URL
[4]Liang J, Sun Z H, Li F, et al. Carbon materials for Li-S batteries: Functional evolution and performance improvement[J]. Energy Storage Materials, 2016,2:76-106.
[5]Zheng D, Liu D, Harris J B, et al. Investigation of the Li-S battery mechanism by real-time monitoring of the changes of sulfur and polysulfide species during the discharge and charge[J]. ACS Applied Materials & Interfaces, 2017,9(5):4326-4332.
doi: 10.1021/acsami.6b08904 URL pmid: 27612389
[6]Wang D R, Shah D B, Maslyn J A, et al. Rate constants of electrochemical reactions in a lithium-sulfur cell determined by operando X-ray absorption spectroscopy[J]. Journal of The Electrochemical Society, 2018,165(14):3487-3495.
[7]Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009,8(6):500-506.
doi: 10.1038/nmat2460 URL pmid: 19448613
[8]Jayaprakash N, Shen J, Moganty S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2011,50(26):5904-5908.
doi: 10.1002/anie.201100637 URL pmid: 21591036
[9]Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011,11(7):2644-2647.
doi: 10.1021/nl200658a URL pmid: 21699259
[10]Schuster J, He G, Mandlmeier B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2012,51(15):3591-3595.
URL pmid: 22383067
[11]Wang D W, Zeng Q C, Zhou G M, et al. Carbon-sulfur composites for Li-S batteries: status and prospects[J]. Journal of Materials Chemistry A, 2013,1(33):9382-9394.
[12]Li L, Zhou G M, Yin L C, et al. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li-S batteries[J]. Carbon, 2016,108:120-126.
[13]Liu J H, Li W F, Duan L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015,15(8):5137-5142.
doi: 10.1021/acs.nanolett.5b01919 URL pmid: 26148211
[14]Wei Seh Z, Li W, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013,4:1331.
URL pmid: 23299881
[15]Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2015,54(13):3907-3911.
URL pmid: 25650042
[16]Song J X, Gordin M L, Xu T, et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angewandte Chemie-International Edition, 2015,54(14):4325-4329.
doi: 10.1002/anie.201411109 URL pmid: 25663183
[17]Cui Z M, Zu C X, Zhou W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials, 2016,28(32):6926-6931.
doi: 10.1002/adma.201601382 URL pmid: 27229660
[18]Park S K, Lee J K, Kang Y C. Yolk-shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li-S batteries[J]. Advanced Functional Materials, 28, 18:1705264.
[19]Peng H J, Zhang Q. Designing host materials for sulfur cathodes: from physical confinement to surface chemistry[J]. Angewandte Chemie-International Edition, 2015,54(38):11018-11020.
doi: 10.1002/anie.201505444 URL pmid: 26352019
[20]Al Salem H, Babu G, Rao C V, et al. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. Journal of The American Chemical Society, 2015,137(36):11542-11545.
doi: 10.1021/jacs.5b04472 URL pmid: 26331670
[21]Li Y J, Fan J M, Zheng M S, et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries[J]. Energy & Environmental Science, 2016,9(6):1998-2004.
[22]Li Y J, Fang J M, Zhang J H, et al. A Honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S Batteries[J]. ACS Nano, 2017,11(11):11417-11424.
URL pmid: 29045778
[23]Yuan Z, Peng H J, Hou T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016,16(1):519-527.
doi: 10.1021/acs.nanolett.5b04166 URL pmid: 26713782
[24]Wang H Q, Zhang W C, Xu J Z, et al. Advances in polar materials for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1707520.
[25]Zhang Z W, Peng H J, Zhao M, et al. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: progress and prospects[J]. Advanced Functional Materials, 2018,28(38):1707536.
[26]Deng C, Wang Z W, Wang S P, et al. Inhibition of polysulfide diffusion in lithium-sulfur batteries: mechanism and improvement strategies[J]. Journal of Materials Che-mistry A, 2019,7(20):12381-12413.
[27]Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014,5:4759.
doi: 10.1038/ncomms5759 URL pmid: 25154399
[28]Tao X Y, Wang J G, Ying Z G, et al. Strong sulfur binding with conducting Magneli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters, 2014,14(9):5288-5294.
URL pmid: 25089648
[29]Li Z, Zhang J T, Lou X W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2015,54(44):12886-12890.
URL pmid: 26349817
[30]Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016,7:11203.
doi: 10.1038/ncomms11203 URL pmid: 27046216
[31]Liang X, Kwok C Y, Lodi-Marzano F, et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle[J]. Advanced Energy Materials, 2016,6(6):1501636.
[32]Liang X, Nazar L F. In situ reactive assembly of scalable core-shell sulfur-mnO2 composite cathodes[J]. ACS Nano, 2016,10(4):4192-4198.
URL pmid: 26910648
[33]Wang X L, Li G, Li J D, et al. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries[J]. Energy & Environmental Science, 2016,9(8):2533-2538.
[34]Wang S Z, Liao J X, Yang X F, et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries[J]. Nano Energy, 2019,57:230-240.
[35]Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications, 2015,6:5682.
doi: 10.1038/ncomms6682 URL pmid: 25562485
[36]Shao Q J, Guo D C, Wang C, et al. Yolk-shell structure MnO2@Hollow carbon nanospheres as sulfur host with synergistic encapsulation of polysulfides for improved Li-S batteries[J]. Journal of Alloys and Compounds, 2020,842:155790.
[37]Liu Y T, Han D D, Wang L, et al. NiCO2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium-sulfur battery[J]. Advanced Energy Materials, 2019,9(11):1803477.
[38]Tao Y Q, Wei Y J, Liu Y, et al. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery[J]. Energy & Environmen-tal Science, 2016,9(10):3230-3239.
[39]Zheng C, Niu S Z, Lv W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017,33:306-312.
[40]Ma F, Liang J S, Wang T Y, et al. Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium-sulfur battery cathodes[J]. Nanoscale, 2018,10(12):5634-5641.
URL pmid: 29528070
[41]Wang C L, Li K, Zhang F F, et al. Insight of enhanced redox chemistry for porous MoO2 carbon-derived framework as polysulfide reservoir in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018,10(49):42286-42293.
URL pmid: 30461261
[42]Liu H D, Chen Z L, Zhou L, et al. Rooting bismuth oxide nanosheets into porous carbon nanoboxes as a sulfur immobilizer for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019,7(12):7074-7081.
[43]Zhou G M, Tian H Z, Jina Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(5):840-845.
doi: 10.1073/pnas.1615837114 URL pmid: 28096362
[44]Shao Q J, Lu P F, Xu L, et al. Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li-S batteries[J]. Journal of Energy Chemistry, 2020,51:262-271.
[45]Lei T Y, Chen W, Huang J W, et al. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries[J]. Advanced Energy Materials, 2017,7(4):1601843.
[46]Thangavel N K, Gopalakrishnan D, Arava L M R. Understanding heterogeneous electrocatalysis of lithium polysulfide redox on Pt and WS2 surfaces[J]. The Journal of Physical Chemistry C, 2017,121(23):12718-12725.
[47]Li M, Zhou J B, Zhou J, et al. Ultrathin SnS2 nanosheets as robust polysulfides immobilizers for high performance lithium-sulfur batteries[J]. Materials Research Bulletin, 2017,96:509-515.
[48]Xiao Z B, Yang Z, Zhang L J, et al. Sandwich-type NbS2@S@I-doped graphene for high-sulfur-loaded, ultrahigh-rate, and long-life lithium-sulfur batteries[J]. ACS Nano, 2017,11(8):8488-8498.
doi: 10.1021/acsnano.7b04442 URL pmid: 28745863
[49]Zhang Q, Wang Y, Seh Z W, et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries[J]. Nano Letters, 2015,15(6):3780-3786.
URL pmid: 25961805
[50]Wang H T, Zhang Q F, Yao H B, et al. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials[J]. Nano Letters, 2014,14(12):7138-7144.
doi: 10.1021/nl503730c URL pmid: 25372985
[51]Babu G, Masurkar N, Al Salem H, et al. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis[J]. Journal of The American Chemical Society, 2017,139(1):171-178.
doi: 10.1021/jacs.6b08681 URL pmid: 28001059
[52]Lin H B, Yang L Q, Jiang X, et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries[J]. Energy & Environmental Science, 2017,10(6):1476-1486.
[53]Lin H B, Zhang S L, Zhang T R, et al. Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium-sulfur batteries[J]. Advanced Energy Materials, 2019,9(38):1902096.
doi: 10.1002/aenm.v9.38 URL
[54]Ren J, Zhou Y B, Xia L, et al. Rational design of a multidimensional N-doped porous carbon/MoS2/CNT nano-architecture hybrid for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018,6(28):13835-13847.
[55]Wei Y J, Kong Z K, Pan Y K, et al. Sulfur film sandwiched between few-layered MoS2 electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018,6(14):5899-5909.
[56]Wu J Y, Li X W, Zeng H X, et al. Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS2 nanosheet@N-doped carbon interlayer for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019,7(13):7897-7906.
[57]Chen X, Peng H J, Zhang R, et al. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides?[J]. ACS Energy Letters, 2017,2(4):795-801.
[58]Ai G, Hu Q Q, Zhang L, et al. Investigation of the nano-crystal CoS2 embedded in 3D honeycomb-like graphitic carbon with a synergistic effect for high-performance lithium sulfur batteries[J]. ACS applied materials & interfaces, 2019,11(37):33987-33999.
doi: 10.1021/acsami.9b11561 URL pmid: 31448888
[59]Li W L, Qian J, Zhao T, et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Advanced Science, 2019,6(16):1802362.
doi: 10.1002/advs.201802362
[60] Ye C, Zhang L, Guo C X, et al. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2017,27(33):1702524.
[61] Cai D, Wang L L, Li L, et al. Self-assembled CdS quantum dots in carbon nanotubes: induced polysulfide trapping and redox kinetics enhancement for improved lithium-sulfur battery performance[J]. Journal of Materials Chemistry A, 2019,7(2):806-815.
[62] Xu J, Zhang W X, Fan H B, et al. Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery[J]. Nano Energy, 2018,51:73-82.
[63] Boyjoo Y, Shi H D, Olsson E, et al. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries[J]. Advanced Energy Materials, 2020,10(20):2000651.
[64] Liu Y P, Ma S Y, Liu L F, et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries[J]. Advanced Functional Materials, 2020,30(32):2002462.
[65] Xiao Z B, Li Z L, Meng X P, et al. MXene-engineered lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019,7(40):22730-22743.
[66] Liang X, Rangom Y, Kwok C Y, et al. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts[J]. Advanced Materials, 2017,29(3):1603040.
[67] Xiao Z B, Li Z L, Li P Y, et al. Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries[J]. ACS Nano, 2019,13(3):3608-3617.
doi: 10.1021/acsnano.9b00177 URL pmid: 30864777
[68] Song Y Z, Sun Z T, Fan Z D, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry[J]. Nano Energy, 2020,70:104555.
[69] Dong Y F, Zheng S H, Qin J Q, et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries[J]. ACS Nano, 2018,12(3):2381-2388.
URL pmid: 29455522
[70] Peng H J, Zhang G, Chen X, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2016,55(42):12990-12995.
doi: 10.1002/anie.201605676 URL pmid: 27513988
[71] Zhou T H, Zhao Y, Zhou G M, et al. An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement[J]. Nano Energy, 2017,39:291-296.
[72] Shang C Q, Cao L J, Yang M Y, et al. Freestanding MO2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries[J]. Energy Storage Materials, 2018,18:375-381.
[73] Zhou F, Li Z, Luo X, et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries[J]. Nano Letters, 2018,18(2):1035-1043.
doi: 10.1021/acs.nanolett.7b04505 URL pmid: 29300493[
74] Pang Q, Nazar L F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption[J]. ACS Nano, 2016,10(4):4111-4118.
doi: 10.1021/acsnano.5b07347 URL pmid: 26841116
[75] Wang M, Liang Q H, Han J W, et al. Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries[J]. Nano Research, 2018,11(6):3480-3489.
[76] Sun Z H, Zhang J Q, Yin L C, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Com-munications, 2017,8:14627.
[77] Zhong Y, Chao D L, Deng S J, et al. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1706391.
[78] He J R, Manthiram A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor[J]. Advanced Energy Materials, 2019,10(3):1903241.
[79] Jeong T G, Choi D S, Song H, et al. Heterogeneous catalysis for lithium-sulfur batteries: enhanced rate performance by promoting polysulfide fragmentations[J]. ACS Energy Letters, 2017,2(2):327-333.
[80] Wang Y, Zhang R, Pang Y C, et al. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries[J]. Energy Storage Materials, 2019,16:228-235.
doi: 10.1016/j.ensm.2018.05.019 URL
[81] Xiao K K, Wang J, Chen Z, et al. Improving Polysulfides Adsorption and Redox Kinetics by the CO4N nanoparticle/n-doped carbon composites for lithium-sulfur batteries[J]. Small, 2019,15(25):1901454.
[82] Li R R, Peng H J, Wu Q P, et al. Sandwich-like catalyst-carbon-catalyst trilayer structure as a compact 2D host for highly stable lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2020,59(29):12129-12138.
doi: 10.1002/anie.202004048 URL pmid: 32298043
[83] Zhao M, Peng H J, Zhang Z W, et al. Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal[J]. Angewandte Chemie-International Edition, 2019,58(12):3779-3783.
doi: 10.1002/anie.201812062 URL pmid: 30548388
[84] Ren W J, Xu L Q, Zhu L, et al. Cobalt-doped vanadium nitride yolk-shell nanospheres@carbon with physical and chemical synergistic effects for advanced Li-S Batteries[J]. ACS Applied Materials & Interfaces, 2018,10(14):11642-11651.
doi: 10.1021/acsami.7b18955 URL pmid: 29546980
[85] Shen Z H, Zhang Z L, Li M, et al. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries[J]. ACS Nano, 2020,14(6):6673-6682.
doi: 10.1021/acsnano.9b09371 URL pmid: 32463691
[86] Zhou T H, Lv W, Li J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science, 2017,10(7):1694-1703.
[87] Ji L, Wang X, Jia Y F, et al. Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry[J]. Advanced Functional Materials, 2020,30(28):1910533.
[88] Yao Y, Wang H Y, Yang H, et al. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries[J]. Advanced Materials, 2020,32(6):1905658.
[89] Ye J C, Chen J J, Yuan R M, et al. Strategies to explore and develop reversible redox reactions of Li-S in electrode architectures using silver-polyoxometalate clusters[J]. Journal of The American Chemical Society, 2018,140(8):3134-3138.
doi: 10.1021/jacs.8b00411 URL pmid: 29425034
[90] Yuan H, Zhang N, Tian L, et al. Incorporation of layered tin(IV) phosphate in graphene framework for high performance lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2021,53:99-108.
[91] Yuan H D, Chen X L, Zhou G M, et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium-sulfur batteries[J]. ACS Energy Letters, 2017,2(7):1711-1719.
[92] Zhou J B, Liu X J, Zhu L Q, et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry[J]. Joule, 2018,2(12):2681-2693.
doi: 10.1016/j.joule.2018.08.010 URL
[93] Shen J D, Xu X J, Liu J, et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries[J]. ACS Nano, 2019,13(8):8986-8996.
doi: 10.1021/acsnano.9b02903 URL pmid: 31356051
[94] Shen Z H, Cao M Q, Zhang Z L, et al. Efficient Ni2CO4P3 nanowires catalysts enhance ultrahigh-loading lithium-sulfur conversion in a microreactor-like battery[J]. Advanced Functional Materials, 2019,30(3):1906661.
doi: 10.1002/adfm.v30.3 URL
[95] Li B Q, Kong L, Zhao C X, et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries[J]. InfoMat, 2019,1(4):533-541.
doi: 10.1002/inf2.v1.4 URL
[96] Du Z Z, Chen X J, Hu W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. Journal of The American Chemical Society, 2019,141(9):3977-3985.
doi: 10.1021/jacs.8b12973 URL pmid: 30764605
[97] Ye H L, Sun J G, Zhang S L, et al. Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li-S batteries[J]. ACS Nano, 2019,13(12):14208-14216.
doi: 10.1021/acsnano.9b07121 URL pmid: 31790591
[98] Fan Y N, Ma F, Liang J S, et al. Accelerated polysulfide conversion on hierarchical porous vanadium-nitrogen-car-bon for advanced lithium-sulfur batteries[J]. Nanoscale, 2020,12(2):584-590.
doi: 10.1039/c9nr09037a URL pmid: 31845694
[99] Wang C G, Song H W, Yu C C, et al. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2020,8(6):3421-3430.
doi: 10.1039/C9TA11680J URL
[100] Zhang D, Wang S, Hu R M, et al. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries[J]. Advanced Functional Materials, 2020,30(30):2002471.
doi: 10.1002/adfm.v30.30 URL
[101] Meini S, Elazari R, Rosenman A, et al. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems[J]. Journal of Physical Chemistry Letters, 2014,5(5):915-918.
doi: 10.1021/jz500222f URL pmid: 26274088
[102] Tsao Y, Lee M, Miller E C, et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries[J]. Joule, 2019,3(3):872-884.
[103] Li G, Wang X L, Seo M H, et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries[J]. Nature Communications, 2018,9(1):705.
doi: 10.1038/s41467-018-03116-z URL pmid: 29453414
[104] Gerber L C, Frischmann P D, Fan F Y, et al. Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator[J]. Nano Letters, 2016,16(1):549-454.
doi: 10.1021/acs.nanolett.5b04189 URL pmid: 26691496
[105] Wu X, Liu N, Guan B, et al. Redox mediator: A new strategy in designing cathode for prompting redox process of Li-S batteries[J]. Advanced Science, 2019,6(21):1900958.
doi: 10.1002/advs.201900958 URL pmid: 31728278
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons