Abstract
The molten electrolytes exhibit high CO2 absorption capacities, wide electrochemical windows and excellent reaction kinetics, which are promising electrolyte candidates for efficient capture and electrochemical conversion of high-flux CO2 driven by renewable and clean electricity sources. This short review introduces the recent advancements of CO2 electroreduction achieved by the authors using molten salt CO2 capture and electrochemical transformation (MSCC-ET) technology, involving CO2 absorption kinetics, cathodic kinetics, controllable synthesis of carbon products with unique nanostructures, development of inert oxygen evolution anodes and CO2 conversion efficiency as well as energy efficiency. The challenges and prospects are also discussed based on the critical review.
Graphical Abstract
Keywords
molten electrolytes, CO2 reduction, cathodic kinetics, carbon materials, inert anode, MSCC-ET
Publication Date
2020-10-28
Online Available Date
2020-10-28
Revised Date
2020-09-16
Received Date
2020-07-17
Recommended Citation
Bo-wen DENG, Hua-yi YIN, Di-hua WANG.
Highly Efficient CO2 Utilization via Molten Salt CO2 Capture and Electrochemical Transformation Technology[J]. Journal of Electrochemistry,
2020
,
26(5): 628-638.
DOI: 10.13208/j.electrochem.200653
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol26/iss5/4
References
[1] Yang Y, Ajmal S, Zheng X Y, et al. Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO2 reduction[J]. Sustainable Energy & Fuels, 2018,2(3):510-537.
[2]
De Luna P, Hahn C, Higgins D, et al. What would it take for renewably powered electrosynjournal to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506.
doi: 10.1126/science.aav3506
URL
pmid: 31023896
[3] Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J]. Energy & Environmental Science, 2019,12(5):1442-1453.
[4]
Jiang R, Gao M X, Mao X H, et al. Advancements and potentials of molten salt CO2 capture and electrochemical transformation (MSCC-ET) process[J]. Current Opinion in Electrochemistry, 2019,17:38-46.
doi: 10.1016/j.coelec.2019.04.011
URL
[5]
Bartlett H E, Johnson K E. Electrochemical studies in molten Li2CO3-Na2CO3[J]. Journal of The Electrochemical Society, 1967,114(5):457-461.
doi: 10.1149/1.2426627
URL
[6] Yin H Y, Mao X H, Tang D Y, et al. Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis[J]. Energy & Environmental Science, 2013,6(5):1538-1545.
[7]
Ijije H V, Sun C, Chen G Z. Indirect electrochemical reduction of carbon dioxide to carbon nanopowders in molten alkali carbonates: Process variables and product properties[J]. Carbon, 2014,73:163-174.
doi: 10.1016/j.carbon.2014.02.052
URL
[8]
Ren J, Li F F, Lau J, et al. One-pot synjournal of carbon nanofibers from CO2[J]. Nano Letters, 2015,15(9):6142-6148.
doi: 10.1021/acs.nanolett.5b02427
URL
pmid: 26237131
[9]
Hu L W, Song Y, Ge J B, et al. Capture and electrochemical conversion of CO2 to ultrathin graphite sheets in CaCl2-based melts[J]. Journal of Materials Chemistry A, 2015,3(42):21211-21218.
doi: 10.1039/C5TA05127D
URL
[10] Wang D H(汪的华), Chen Z(陈政). Innovation in molten salt electrochemistry[J]. Journal of the Electrochemistry (电化学), 2005,11(2):119-124.
[11] Xiao W(肖巍), Zhu H(朱华), Yin H Y(尹华意), et al. Novel molten-salt electrolysis processes towards low-carbon metallurgy[J]. Journal of the Electrochemistry (电化学), 2012,18(3):193-200.
[12] Yin H Y, Wang D H. Electrochemical valorization of carbon dioxide in molten salts[M] //Li L, Wong-Ng W, Huang K, et al. Materials and processes for CO2 capture, conversion, and sequestration. New York: John Wiley & Sons, Inc., 2018: 267-295.
[13] Deng B W(邓博文), Song Y Q(宋宇桥), Mao X H(毛旭辉), et al. Capture and electrochemical conversion of CO2 in high-temperature molten salts[J]. Journal of Wuhan University(Natural Science Edition) (武汉大学学报(理学版)), 2016,62(1):1-8.
[14]
Deng B W, Tang J J, Mao X H, et al. Kinetic and thermodynamic characterization of enhanced carbon dioxide absorption process with lithium oxide-containing ternary molten carbonate[J]. Environmental Science & Technology, 2016,50(19):10588-10595.
doi: 10.1021/acs.est.6b02955
URL
pmid: 27602783
[15]
Deng B W, Chen Z G, Gao M X, et al. Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition[J]. Faraday Discussions, 2016,190:241-258.
doi: 10.1039/c5fd00234f
URL
pmid: 27193751
[16]
Wakamatsu T, Uchiyama T, Natsui S, et al. Solubility of gaseous carbon dioxide in molten LiCl-Li2O[J]. Fluid Phase Equilibria, 2015,385:48-53.
doi: 10.1016/j.fluid.2014.10.046
URL
[17]
Hu L W, Song Y, Ge J B, et al. Electrochemical deposition of carbon nanotubes from CO2 in CaCl2-NaCl-based melts[J]. Journal of Materials Chemistry A, 2017,5(13):6219-6225.
doi: 10.1039/C7TA00258K
URL
[18]
Tang D Y, Yin H Y, Mao X H, et al. Effects of applied voltage and temperature on the electrochemical production of carbon powders from CO2 in molten salt with an inert anode[J]. Electrochimica Acta, 2013,114:567-573.
doi: 10.1016/j.electacta.2013.10.109
URL
[19]
Gao M X, Deng B W, Chen Z G, et al. Cathodic reaction kinetics for CO2 capture and utilization in molten carbonates at mild temperatures[J]. Electrochemistry Communications, 2018,88:79-82.
doi: 10.1016/j.elecom.2018.02.003
URL
[20]
Gao M X, Deng B W, Chen Z G, et al. Enhanced kinetics of CO2 electro-reduction on a hollow gas bubbling electrode in molten ternary carbonates[J]. Electrochemistry Communications, 2019,100:81-84.
doi: 10.1016/j.elecom.2019.01.026
URL
[21] Deng B W, Gao M X, Yu R, et al. Critical operating conditions for enhanced energy-efficient molten salt CO2 capture and electrolytic utilization as durable looping applications[J]. Applied Energy, 2019,255:113862.
[22] Gao M X, Chen Z G, Deng B W, et al. (Invited) Electrochemical deposition of carbon materials in molten salts[J]. ECS Transactions, 2017,80(10):791-799.
[23] Gu Y X(谷雨星), Yang J(杨娟), Wang D H(汪的华). Electrochemical features of carbon prepared by molten salt electro-reduction of CO2[J]. Acta Physico-Chimica Sinica (物理化学学报), 2018,35(2):208-214.
[24] Tang J J, Deng B W, Xu F, et al. The lithium storage performance of electrolytic-carbon from CO2[J]. Journal of Power Sources, 2017,341:419-426.
[25] Tang D Y, Dou Y P, Yin H Y, et al. The capacitive performances of carbon obtained from the electrolysis of CO2 in molten carbonates: effects of electrolysis voltage and temperature[J]. Journal of Energy Chemistry, 2019. DOI: 10.1016/j.jechem.2019.11.006.
[26] Mao X H, Yan Z P, Sheng T, et al. Characterization and adsorption properties of the electrolytic carbon derived from CO2 conversion in molten salts[J]. Carbon, 2017,111:162-172.
[27]
Jiang D, Yang J, Wang D H. Green carbon material for organic contaminants adsorption[J]. Langmuir, 2020,36(12):3141-3148.
doi: 10.1021/acs.langmuir.9b03811
URL
pmid: 32146816
[28] Chen Z G, Gu Y X, Du K F, et al. Enhanced electrocatalysis performance of amorphous electrolytic carbon from CO2 for oxygen reduction by surface modification in molten salt[J]. Electrochimica Acta, 2017,253:248-256
[29] Ge J B, Wang S, Zhang F, et al. Electrochemical preparation of carbon films with a MO2C interlayer in LiCl-NaCl-Na2CO3 melts[J]. Applied Surface Science, 2015,347:401-405.
[30] Chen Z G, Deng B W, Du K F, et al. Flue-gas-derived sulfur-doped carbon with enhanced capacitance[J]. Advanced Sustainable Systems, 2017,1(6):1700047.
[31] Chen Z G, Gu Y X, Hu L Y, et al. Synjournal of nanostructured graphite: via molten salt reduction of CO2 and SO2 at a relatively low temperature[J]. Journal of Materials Chemistry A, 2017,5(39):20603-20607.
[32] Deng B W, Tang J J, Gao M X, et al. Electrolytic synjournal of carbon from the captured CO2 in molten LiCl-KCl-CaCO3: critical roles of electrode potential and temperature for hollow structure and lithium storage performance[J]. Electrochimica Acta, 2018,259:975-985.
[33] Deng B W, Mao X H, Xiao W, et al. Microbubble effect-assisted electrolytic synjournal of hollow carbon spheres from CO2[J]. Journal of Materials Chemistry A, 2017,5(25):12822-12827.
[34]
Hu L W, Song Y, Jiao S Q, et al. Direct conversion of greenhouse gas CO2 into graphene via molten salts electrolysis[J]. ChemSusChem, 2016,9(6):588-594.
URL
pmid: 26871684
[35] Wu H G, Liu Y, Ji D Q, et al. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts[J]. Journal of Power Sources, 2017,362:92-104.
[36] Liu Y, Yuan D D, Ji D Q, et al. Syngas production: diverse H2/CO range by regulating carbonates electrolyte composition from CO2/H2O: via co-electrolysis in eutectic molten salts[J]. RSC Advances, 2017,7(83):52414-52422.
[37] Du K F, Zheng K Y, Chen Z G, et al. Unusual temperature effect on the stability of nickel anodes in molten carbonates[J]. Electrochimica Acta, 2017,245:402-408.
[38] Zheng K Y, Du K F, Cheng X H, et al. Nickel-iron-copper alloy as inert anode for ternary molten carbonate electrolysis at 650oC[J]. Journal of The Electrochemical Society, 2018,165(11):E572-E577.
[39] Zheng K Y, Cheng X H, Dou Y P, et al. Electrolytic production of nickel-cobalt magnetic alloys from solid oxides in molten carbonates[J]. Journal of The Electrochemical Society, 2017,164(13):E422-E427.
[40] Cheng X H, Yin H Y, Wang D H. Rearrangement of oxide scale on Ni-11Fe-10Cu alloy under anodic polarization in molten Na2CO3-K2CO3[J]. Corrosion Science, 2018,141:168-174.
[41] Wang P L, Du K F, Dou Y P, et al. Corrosion behaviour and mechanism of nickel anode in SO42- containing molten Li2CO3-Na2CO3-K2CO3[J]. Corrosion Science, 2020,166:108450.
[42] Du K F, Yu R, Gao M X, et al. Durability of platinum coating anode in molten carbonate electrolysis cell[J]. Corrosion Science, 2019,153:12-18.
[43] Moomaw W, Burgherr P, Heath G, et al. Annex II: Meth-odology[M]//Edenhofer O, Pichs-Madruga R, Sokona Y, et al. IPCC special report on renewable energy sources and climate change mitigation. Cambridge: Cambridge University Press, 2011: 10-11.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons