Abstract
Professor C.S. Cha was among the pioneers who have introduced modern electrochemistry to China. Under his leadership, the electrochemical research group in Wuhan University became one of the global powerhouses in fundamental and applied electrochemical researches. During the past many decades, Professor Cha and his colleagues in the university have educated and trained many students who have become part of the backbone of electrochemistry worldwide. In this review, we demonstrate the solid foundation laid by Professor Cha and his colleagues in Wuhan University, and the advancements made in the area of porous electrodes by the authors. All the authors in this paper graduated from Wuhan University at different times. We are fortunate to be standing on the shoulders of a giant.
Graphical Abstract
Keywords
porous electrode, gas diffusion electrode, electrochemical accessible area, ac impedance, transmission line model, initial potential decay
Publication Date
2020-10-28
Online Available Date
2020-10-28
Revised Date
2020-09-21
Received Date
2020-07-06
Recommended Citation
Wei-xiao JI, Gong-wei WANG, Qiang WANG, Li-jun BAI, De-yang QU.
Porous Electrodes in Electrochemical Energy Storage Systems[J]. Journal of Electrochemistry,
2020
,
26(5): 576-595.
DOI: 10.13208/j.electrochem.200649
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol26/iss5/8
References
[1] 武汉大学电化学研究室. “氢-空气”燃料电池研究 I 空气电极掺液和盐析机理的探讨[J]. Journal of Wuhan University(Natural science) (武汉大学学报(自然科学版)), 1974,1:31-40.
[2] 武汉大学电化学研究室. “氢-空气”燃料电池研究 II 以氧化铝为载体的高活性银催化剂[J]. Journal of Wuhan University (Natural science) (武汉大学学报(自然科学版)), 1975,1:28-34.
[3] 武汉大学电化学研究室. “氢-空气”燃料电池研究 III 纤维化聚四氟乙烯-乙炔黑防水导电透气膜[J]. Journal of Wuhan University (Natural science) (武汉大学学报(自然科学版)), 1975,2:58-62.
[4] 武汉大学电化学研究室. “氢-空气”燃料电池研究 IV几种排水方案的计算比较[J]. Journal of Wuhan University(Natural science) (武汉大学学报(自然科学版)), 1975,4:37-43.
[5] 武汉大学电化学研究室. “氢-空气”燃料电池研究 V 集流网设计对极化分布的影响[J]. Journal of Wuhan University (Natural science) (武汉大学学报(自然科学版)), 1976,3:50-57.
[6] 武汉大学电化学研究室. “氢-空气”燃料电池研究 VI 200瓦氨-空气燃料电池系统[J]. Journal of Wuhan University (Natural science) (武汉大学学报(自然科学版)), 1976,4:15-18.
[7] Tien C W(田昭武). 多孔电极极化理论 I 传质特征电流及其应用[J]. Journal of Xiamen University (Natural science) (厦门大学学报(自然科学版)), 1978,3:48-57.
[8] Tien C W(田昭武). 孔电极极化理论 II 有欧姆极化的电极稳态的解和导电特征电流[J]. Journal of Xiamen University (Natural science) (厦门大学学报(自然科学版)), 1978,3:58-71.
[9] Tien C W(田昭武). 多孔电极极化理论 I 多孔电极内部的传输特征电流[J]. Science in China (中国科学), 1981,11(4):442-448.
[10] Tien C W(田昭武). 多孔电极极化理论 I 气体扩散多孔电极的不平整液膜模型[J]. Science in China (中国科学), 1981,11(5):581-587.
[11] Wang Y F, Zheng D, Yang X Q, et al. High rate oxygen reduction in non-aqueous electrolyte with the addition of perfluorinated additives[J]. Energy & Environmental Science, 2011,4(9):3697-3702.
[12] Huang J, Li Z, Zhang J B. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer[J]. Frontiers in Energy, 2017,11(3):334-364.
[13] Will F G. Electrochemical oxidation of hydrogen on partially immersed platinum electrodes: II. Theoretical treatment[J]. Journal of The Electrochemical Society, 1963,110(2):152-160.
[14] Cha C S(査全性). 电极过程动力学导论(第三版)[M]. China Science Publishing, 2002. 307.
[15] Butt H J, Graf K, Kappl M. Physics and chemistry of interfaces[M]. John Wiley & Sons: Wiley-VCH, 2013.
[16] Bidault F, Brett D J L, Middleton P H, et al. Review of gas diffusion cathodes for alkaline fuel cells[J]. Journal of Power Sources, 2009,187(1):39-48.
[17]
Cifrain M, Kordesch K V. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes[J]. Journal of Power Sources, 2004,127(1/2):234-242.
doi: 10.1016/j.jpowsour.2003.09.019
URL
[18] Lundblad A, Björnbom P. Wetting-in studies on alkaline-fuel-cell cathodes using a potentiostatic-galvanostatic experimental design[J]. Journal of Electrochemical Society, 1994,141(6):1503-1508.
[19] Lu C T(陆君涛), Cha C S(査全性), Yen H C(严河清), et al. The mechanism of weeping and salt-precipitation of air electrodes[J]. Acta Chemica Sinica (化学学报), 1978,36(4):249-260.
[20] Kampe D J, Sarangapani S. The electrochemistry of carbon[M] // S. Sarangapani, J. R. Akridge, B. Schumm, Editors, PV 84-85, 179-191, The Electrochemical Society Proceedings Series, Pennington, NJ: 1984.
[21]
Sandhu S S, Fellner J P, Brutchen G W. Diffusion-limited model for a lithium/air battery with an organic electrolyte[J]. Journal of Power Sources, 2007,164(1):365-371.
doi: 10.1016/j.jpowsour.2006.09.099
URL
[22] Tran C, Yang X Q, Qu D Y. Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity[J]. Journal of Power Sources, 2010, 195(7): 2057-2063.
[23] Vierling P. Blood substitutes. Preparation, physiology and medical applications[J]. Advanced Materials, 1988,1(5):172-173.
[24] Cha C S, Li C M, Yang H X, et al. Powder microelectrodes[J]. Journal of Electroanalytical Chemistry, 1994,368(1/2):47-54.
[25] Fleischmann M. Ultramicroelectrodes[M]. Datatech systems, 1987.
[26] Tran C, Yang X Q, Qu D Y. Increased discharge capacity of a Li-air activated carbon cathode produced by preventing carbon surface passivation[J]. Carbon, 2011,49(4):1266-1271.
[27] Wang Q, Cha C S, Lu J T, et al. Ionic conductivity of pure water in charged porous matrix[J]. ChemPhyChem, 2012,13(2):514-519.
[28]
Wang Q, Cha C S, Lu J T, et al. The electrochemistry of “solid/water” interfaces involved in PEM-H2O reactors, Part I. The “Pt/water” interface[J]. Physical Chemistry Chemical Physics, 2009,11(4):679-687.
doi: 10.1039/b810429h
URL
pmid: 19835090
[29]
Huang J, Zhang J B, Eikerling M. Theory of electrostatic phenomena in water-filled Pt nanopores[J]. Faraday Discussions, 2016,193:427-446.
doi: 10.1039/c6fd00094k
URL
pmid: 27711814
[30] Sing K S W, Everett D H, Haul R A W, et al. Pure and applied chemistry[M]. 1985,57(4):603-619.
[31] Qu D Y, Shi H. Studies of activated carbon used in double-layer capacitors[J]. Journal of Power Sources, 1998,74(1):99-107
[32] de Levie R. On porous electrodes in electrolyte solutions: I. Capacitance effects[J]. Electrochimica Acta, 1963,8(10):751-780.
[33] Levie R. On porous electrodes in electrolyte solutions—IV[J]. Electrochimica Acta, 1964,9(9):1231-1245.
[34] Robert D L. Electrochemical response of porous and rough electrodes[J]. Advances in Electrochemistry and Electrochemical Engineering, 1967,6:329-397.
[35] Qu D Y, Wang G W, Kafle J, et al. Electrochemical impedance and its application in energy storage systems[J]. Small Method, 2018,2(8):1700342.
[36] Bai L, Gao L, Conway B E. Problem of in situ real-area determination in evaluation of performance of rough or porous, gas-evolving electrocatalysts. Part 2. —Unfolding of the electrochemically accessible surface of rough or porous electrodes: a case-study with an electrodeposited porous Pt electrode[J]. Journal of the Chemical Society, Faraday Transactions, 1993,89(2):243-249.
[37] Bai L, Gao L, Conway B E. Problem of in situ real-area determination in evaluation of performance of rough or porous, gas-evolving electrocatalysts. Part 1. —Basis for distinction between capacitance of the double layer and the pseudocapacitance due to adsorbed H in the H2 evolution reaction at Pt[J]. Journal of the Chemical Society, 1993,89(2):235-242.
[38] Qu D Y. Application of a.c. impedance techniques to the study of the proton diffusion process in the porous MnO2 electrode[J]. Electrochimica Acta, 2003,48(12):1675-1684.
[39] Qu D Y. The study of the proton diffusion process in the porous MnO2 electrode[J]. Electrochimica Acta, 2004,49(4):657-665.
[40] Qu H N, Kafle J, Harris J, et al. Application of ac impedance as diagnostic tool - Low temperature electrolyte for a Li-ion battery[J]. Electrochimica Acta, 2019, 322: UNSP134755.
[41] Kafle J, Harris J, Chang J, et al. Development of wide temperature electrolyte for graphite/LiNiMnCoO2 Li-ion cells: High throughput screening[J]. Journal of Power Sources, 2018,392:60-68.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons