Abstract
In this report, a dopamine electrochemical sensor based on metal-substituted polyoxometalates and reduced graphene oxide (RGO) composite was successfully constructed. The K2H2SiW11NiO39·xH2O (SiW11Ni) was synthesized by hydrothermal method, while the RGO was prepared by Hummers' method and chemical reduction method. The above-mentioned materials were characterized by SEM, FTIR and XRD. The as-synthesized SiW11Ni and RGO composites were modified on the surface of glassy carbon electrode (GCE) by drop coating method, and the sensing interface (SiW11Ni-RGO/GCE) was successfully constructed. The electrochemical properties of the sensing interface were studied by electrochemical impedance spectroscopy and cyclic voltammetry. After optimizing the experimental conditions, dopamine could be quantitatively detected by cyclic voltammetry with good performance. The limit of detection was 3.2 μmol·L -1 (S/N = 3), the sensitivity was 9.71 μA·(μmol·L -1·cm -2) -1, and the linear range was 10 to 80 μmol·L -1.
Graphical Abstract
Keywords
dopamine, electrochemical sensor, polyoxometalates, reduced graphene oxide, cyclic voltammetry
Publication Date
2020-12-28
Online Available Date
2019-12-16
Revised Date
2019-12-13
Received Date
2019-07-16
Recommended Citation
Yi-fei XING, Na LI, Xiao-fang WEN, Hong-yan HAN, Min CUI, Cong ZHANG, Ju-jie REN, Xue-ping JI.
Electrochemical Determination of Dopamine Based on Metal-Substituted Polyoxometalates Composites[J]. Journal of Electrochemistry,
2020
,
26(6): 890-899.
DOI: 10.13208/j.electrochem.190716
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol26/iss6/12
References
[1]
Jennings K A . A comparison of the subsecond dynamics of neurotransmission of dopamine and serotonin[J]. ACS Chemical Neuroscience, 2013,4(5):704-714.
doi: 10.1021/cn4000605
URL
pmid: 23627553
[2]
Biosa A, Arduini I, Soriano M E , et al. Dopamine oxidation products as mitochondrial endotoxins, a potential molecular mechanism for preferential neurodegeneration in Parkinson's disease[J]. ACS Chemical Neuroscience, 2018,9(11):2849-2858.
doi: 10.1021/acschemneuro.8b00276
URL
pmid: 29906101
[3]
Nam E, Derrick J S, Lee S , et al. Regulatory activities of dopamine and its derivatives toward metal-free and metal-induced amyloid-β aggregation, oxidative stress, and inflammation in Alzheimer's disease[J]. ACS Chemical Neuroscience, 2018,9(11):2655-2666.
doi: 10.1021/acschemneuro.8b00122
URL
pmid: 29782798
[4]
Clark L F, Kodadek T . The immune system and neuroinflammation as potential sources of blood-based biomarkers for Alzheimer's disease, Parkinson's disease, and Huntington's disease[J]. ACS Chemical Neuroscience, 2016,7(5):520-527.
doi: 10.1021/acschemneuro.6b00042
URL
pmid: 27046268
[5]
Yorgason J T, Jones S R, España R A . Low and high affinity dopamine transporter inhibitors block dopamine uptake within 5 sec of intravenous injection[J]. Neuroscience, 2011,182:125-132.
URL
pmid: 21402130
[6]
Verlinden H . Dopamine signalling in locusts and other insects[J]. Insect Biochemistry and Molecular Biology, 2018,97:40-52.
doi: 10.1016/j.ibmb.2018.04.005
URL
pmid: 29680287
[7]
Lakkappa N, Krishnamurthy P T, Yamjala K , et al. Evaluation of antiparkinson activity of PTUPB by measuring dopamine and its metabolites in Drosophila melanogaster: LC-MS/MS method development[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018,149:457-464.
doi: 10.1016/j.jpba.2017.11.043
URL
pmid: 29169114
[8] Sun Y L, Lin Y N, Ding C F , et al. An ultrasensitive and ultraselective chemiluminescence aptasensor for dopamine detection based on aptamers modified magnetic mesoporous silica@graphite oxide polymers[J]. Sensors and Actuators B: Chemical, 2018,257:312-323.
[9]
De Benedetto G E, Fico D, Pennetta A , et al. A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014,98:266-270.
doi: 10.1016/j.jpba.2014.05.039
URL
pmid: 24971521
[10] Diab N, Morales D M, Andronescu C , et al. A sensitive and selective graphene/cobalt tetrasulfonated phthalocyanine sensor for detection of dopamine[J]. Sensors and Actuators B: Chemical, 2019,285:17-23.
[11] Jiao J, Zuo J W, Pang H J , et al. A dopamine electrochemical sensor based on Pd-Pt alloy nanoparticles decorated polyoxometalate and multiwalled carbon nanotubes[J]. Journal of Electroanalytical Chemistry, 2018,827:103-111.
[12] Müller A, Peters F, Pope M T , et al. Polyoxometalates: Very large clusters nanoscale magnets[J]. Chemical Reviews, 1998,98(1):239-272.
[13] Teng D( 滕达), Wang Q( 王庆), Li N( 李娜 ), et al. Synjournal and electrochemical properties of supramolecular compounds based on POMs[J]. Journal of Molecular Science( 分子科学学报), 2019,35(2):148-154.
[14] Zhang L, Li S B, Zhang Z F , et al. Facile fabrication of reduced graphene oxide and Keggin-type polyoxometalates nanocomposite film for high performance electrocatalytic oxidation of nitrite[J]. Journal of Electroanalytical Chemistry, 2017,807:97-103.
[15] Zhu D, Guo D X, Zhang L L , et al. Non-enzymatic xanthine sensor of heteropolyacids doped ferrocene and reduced graphene oxide via one-step electrodeposition combined with layer-by-layer self-assembly technology[J]. Sensors and Actuators B: Chemical, 2019,281:893-904.
[16] Ensafi A A, Gorgabi-Khorzoughi M, Rezaei B , et al. Electrochemical behavior of polyoxometalates decorated on poly diallyl dimethyl ammonium chloride-MWCNTs: A highly selective electrochemical sensor for determination of guanine and adenine[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017,78:56-64.
[17] Xing R M, Tong L Y, Zhao X Y , et al. Rapid and sensitive electrochemical detection of myricetin based on polyoxometalates/SnO2/gold nanoparticles ternary nanocomposite film electrode[J]. Sensors and Actuators B: Chemical, 2019,283:35-41.
[18]
Pang Y H, Zhang Y, Sun X L , et al. Synergistical accumulation for electrochemical sensing of 1-hydroxypyrene on electroreduced graphene oxide electrode[J]. Talanta, 2019,192:387-394.
doi: 10.1016/j.talanta.2018.08.042
URL
pmid: 30348407
[19]
Zhang X, Wu L, Zhou J W , et al. A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode[J]. Journal of Electroanalytical Chemistry, 2015,742:97-103.
doi: 10.1016/j.jelechem.2015.02.006
URL
[20]
Gao W, Tjiu W W, Wei J , et al. Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni(OH)2/electroreduced graphene oxide-Multiwalled carbon nanotube film modified glass carbon electrode[J]. Talanta, 2014,120:484-490.
doi: 10.1016/j.talanta.2013.12.012
URL
[21]
Liu Y, Huang Z, Xie Q J , et al. Electrodeposition of electroreduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic(III)[J]. Sensors and Actuators B: Chemical, 2013,188:894-901.
doi: 10.1016/j.snb.2013.07.113
URL
[22]
Prashanth S N, Teradal N L, Seetharamappa J , et al. Fabrification of electroreduced graphene oxide - bentonite sodium composite modified electrode and its sensing application for linezolid[J]. Electrochimica Acta, 2014,133:49-56.
doi: 10.1016/j.electacta.2014.04.022
URL
[23]
Li Z, Huang Y, Chen L , et al. Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide-polythionine nanocomposite film[J]. Sensors and Actuators B: Chemical, 2013,181:280-287.
doi: 10.1016/j.snb.2013.01.072
URL
[24] Ma R H( 马荣华), Liu C T( 刘春涛), Qu L Y( 瞿伦玉 ). Synjournal, characterization and electrochemical behavior of iron substituted tungstosilicates positional isomer[J]. Chinese Journal of Inorganic Chemistry( 无机化学学报), 2001,17(1):143-148.
[25]
Albers R F, Bini R A, Souza J B , et al. A general one-pot synthetic strategy to reduced graphene oxide (rGO) and rGO-nanoparticle hybrid materials[J]. Carbon, 2019,143:73-84.
doi: 10.1016/j.carbon.2018.10.087
URL
[26]
Sun J H, Bai S L, Tian Y , et al. Hybridization of ZnSnO3 and rGO for improvement of formaldehyde sensing properties[J]. Sensors and Actuators B: Chemical, 2018,257:29-36.
doi: 10.1016/j.snb.2017.10.015
URL
[27] Ma R H( 马荣华), Han Z Q( 韩泽群 ). Preparation and adsorption properties of β3-SiW11Ni/GO composites for methylene blue[J]. Chemical Reagents( 化学试剂), 2018,40(3):203-206.
[28]
Zhao H Y, Ji X P, Wang B B , et al. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection[J]. Biosensors and Bioelectronics, 2015,65:23-30.
doi: 10.1016/j.bios.2014.10.007
URL
pmid: 25461134
[29]
Zhang Z X, Wang X L, Yang X R . A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics[J]. Analyst, 2011,136(23):4960-4965.
doi: 10.1039/c1an15602k
URL
[30]
Yan X Y, Gu Y, Li C , et al. Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine[J]. Biosensors and Bioelectronics, 2016,77:1032-1038.
doi: 10.1016/j.bios.2015.10.085
URL
pmid: 26556183
[31]
Jin H, Zhao C Q, Gui R J , et al. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine[J]. Analytica Chimica Acta, 2018,1025:154-162.
doi: 10.1016/j.aca.2018.03.036
URL
pmid: 29801604
[32]
Wang J, Li Y M, Wu S F , et al. Study on the electrochemical properties of Salvianic acid a sodium and its analytical application[J]. Journal of the Chinese Chemical Society, 2012,59(8):947-952.
doi: 10.1002/jccs.201100757
URL
[33]
Yang L, Liu D, Huang J S , et al. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode[J]. Sensors and Actuators B: Chemical, 2014,193:166-172.
doi: 10.1016/j.snb.2013.11.104
URL
[34]
Li X Y, Lu X J, Kan X W . 3D electrochemical sensor based on poly(hydroquinone)/gold nanoparticles/nickel foam for dopamine sensitive detection[J]. Journal of Electroanalytical Chemistry, 2017,799:451-458.
doi: 10.1016/j.jelechem.2017.06.047
URL
[35]
Numan A, Shahid M M, Omar F S , et al. Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection[J]. Sensors and Actuators B: Chemical, 2017,238:1043-1051.
doi: 10.1016/j.snb.2016.07.111
URL
[36]
Dincer C, Ktaich R, Laubender E , et al. Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection[J]. Electrochimica Acta, 2015,185:101-106.
doi: 10.1016/j.electacta.2015.10.113
URL
[37]
Gao F, Cai X L, Wang X , et al. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode[J]. Sensors and Actuators B: Chemical, 2013,186:380-387.
doi: 10.1016/j.snb.2013.06.020
URL
[38] Dong P F( 董鹏飞), Li N( 李娜), Zhao H Y( 赵海燕 ). Synjournal of Keggin polyoxometalates modified carbon paste electrode as a sensor for dopamine detection[J]. Journal of Electrochemistry( 电化学), 2018,24(5):555-562.