Abstract
Titanium-based iridium oxide electrode has been widely used in various fields, such as electrocatalytic oxidation, biomedical applications, hydrometallurgical metal recovery, electro-osmotic dewatering, etc. At present, it is mainly prepared by traditional thermal decomposition method, however, which has high cost, cumbersome process, mainly relying on manual labor and cannot be mass-produced yet. It is, therefore, urgently necessary to explore new preparation technologies by focusing on electrodeposition technology, with technological characteristics such as eco-friendly and sustainable development. This article systematically discusses the research progress in iridium oxide electrodeposition preparation technology from the aspects of deposition solution formulation, base material selection and treatment, electrodeposition method and deposition time, etc. Some works and achievements, made by the author's research group, such as a new electrodeposition recipe of titanium-based iridium oxide electrode and the pretreatment of titanium with anodic oxidation for improving the stability of electrodeposited IrO2 electrode are also presented. The current challenges faced by the electrodeposition preparation technology of titanium-based iridium oxide electrode, including bad coating quality, weak bonding ability between coating and substrate, lack of the study on the theory about dynamic of electrodeposition and the problem of industrial applications are analyzed. Based upon the aforementioned challenges, some suggestions, for example, utilizing optimization of the electrodeposition, multi-deposition process combination, metal (such as tantalum, lanthanum) co-deposition, are given to solve for the problem of coating quality. The process of electrodeposition by utilizing in-situ electrochemical methods, and combined with COMSOL and other software to simulate the process, and then starting from both electrochemical theory and crystal growth theory, as well as the gradually perfect the theoretical research on electrodeposition of iridium oxide on titanium are summarized. Finally, the application prospects and future development directions are highlighted. It is expected that this brief review would offer critical insights and useful guidelines for developing superior electrodeposition technology of titanium-based iridium oxide electrode.
Graphical Abstract
Keywords
IrO2/Ti electrodes, electrodeposition, industrial applications
Publication Date
2021-02-28
Online Available Date
2020-09-17
Revised Date
2020-08-27
Received Date
2020-08-14
Recommended Citation
Dan-Dan Wu, Xu Wu.
Research Progress in Electrodeposition Technology of Titanium-Based Iridium Oxide Electrode[J]. Journal of Electrochemistry,
2021
,
27(1): 35-44.
DOI: 10.13208/j.electrochem.200802
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol27/iss1/2
References
[1]
Scialdone O, Randazzo S, Galia A, Filardo G. Electrochemical oxidation of organics at metal oxide electrodes: The incineration of oxalic acid at IrO2-Ta2O5 (DSA-O2) anode[J]. Electrochim. Acta, 2009,54(4):1210-1217.
doi: 10.1016/j.electacta.2008.08.064
URL
[2]
Huang C A, Yang S W, Chen C Z, Hsu F Y. Electrochemical behavior of IrO2-Ta2O5/Ti anodes prepared with different surface pretreatments of Ti substrate[J]. Surf. Coat. Technol., 2017,320:270-278.
doi: 10.1016/j.surfcoat.2017.01.005
URL
[3]
Krysa J, Kule L, Mráz R, Rousar I. Effect of coating thickness and surface treatment of titanium on the properties of IrO2-Ta2O5 anodes[J]. J. Appl. Electrochem., 1996,26(10):999-1005.
doi: 10.1007/BF00242194
URL
[4]
Xiao J, Wu X, Yu W B, Liang S, Yu J W, Gu Y Y, Deng H L, Hu J K, Xiao K K, Yang J K. Migration and distribution of sodium ions and organic matters during electro-dewatering of waste activated sludge at different dosages of sodium sulfate[J]. Chemosphere, 2017: 189:67-75.
doi: 10.1016/j.chemosphere.2017.09.034
URL
pmid: 28926790
[5]
Yu J G, Zhao X J, Zhao Q N. Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method[J]. Mater. Chem. Phys., 2001,69(1-3):25-29.
doi: 10.1016/S0254-0584(00)00291-1
URL
[6]
Terabe K, Kato K, Miyazaki H, Yamaguchi S, Imai A, Iguchi Y. Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide[J]. J. Mater. Sci., 1994,29(6):1617-1622.
doi: 10.1007/BF00368935
URL
[7]
Thanawala S S, Baird R J, Georgiev D G, Auner G W. Amorphous and crystalline IrO2 thin films as potential stimulation electrode coatings[J]. Appl. Surf. Sci., 2008,254(16):5164-5169.
doi: 10.1016/j.apsusc.2008.02.054
URL
[8]
Labou D, Slavcheva E, Schnakenberg U, Neophytides S. Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode[J]. J. Power Sources, 2008,185(2):1073-1078.
doi: 10.1016/j.jpowsour.2008.08.013
URL
[9]
Lee B S, Ahn S H, Park H Y, Choi I, Yoo S J, Kim H J, Henkensmeier D, Kim J Y, Park S, Nam S W, Lee K Y, Jang J H. Development of electrodeposited IrO2 electrodes as anodes in polymer electrolyte membrane water electrolysis[J]. Appl. Catal. B - Environ., 2015,179:285-291.
doi: 10.1016/j.apcatb.2015.05.027
URL
[10]
Pratsalfonso E, Abad L, Casanpastor N, Gonzalo-Ruiz J, Baldrich E. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples[J]. Biosens. Bioelectron., 2013,39(1):163-169.
doi: 10.1016/j.bios.2012.07.022
URL
pmid: 22857994
[11] Jin H. Fabrication, characterisation, and optical applications of electrochemically deposited nanostructured IrOx films[D]. Southampton: University of Southampton, 2008.
[12]
Zhang Y L, Cao M M, Lü H, Wei J C, Gu Y Y, Liu D G, Zhang W B, Ryan M P, Wu X. Electrodeposited nanometer-size IrO2/Ti electrodes with 0.3 mg IrO2 cm-2 for sludge dewatering electrolysers[J]. Electrochim. Acta, 2018,265:507-513.
doi: 10.1016/j.electacta.2018.01.190
URL
[13]
Wang J, Rivas G, Chicharro M. Glucose microsensors based on electrochemical deposition of iridium and glucose oxidase onto carbon fiber[J]. J. Electroanal. Chem., 1997,439:55-61.
doi: 10.1016/S0022-0728(97)00371-9
URL
[14] N Ther J, K Ster F, Freudenberger R, Schoberl C, Lampke T. Electrochemical deposition of iridium and iridium-nickel-alloys[M]. IOP Conference Series: Materials Science and Engineering, 2017,181:012041.
[15] Jian X H, Tsai D S, Chung W H, Huang Y S, Liu F J. Pt-Ru and Pt-Mo electrodeposited onto Ir-IrO2 nanorods and their catalytic activities in methanol and ethanoloxidation[J]. J. Mater. Chem., 2009,19(11):1601-1607.
[16]
Yagi M, Tomita E, Kuwabara T. Remarkably high activity of electrodeposited IrO2 film for electrocatalytic water oxidation[J]. J. Electroanal. Chem., 2005,579(1):83-88.
doi: 10.1016/j.jelechem.2005.01.030
URL
[17]
Yamanaka K. Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices[J]. Jpn. J. Appl. Phys., 1989,28(4):632-637.
doi: 10.1143/JJAP.28.632
URL
[18]
Baur J E, Spaine T W. Electrochemical deposition of iridium (IV) oxide from alkaline solutions of iridium(III) oxide[J]. J. Electroanal. Chem., 1998,443(2):208-216.
doi: 10.1016/S0022-0728(97)00532-9
URL
[19]
Bezbaruah A N, Zhang T C. Fabrication of Anodically Electrodeposited Iridium Oxide Film pH Microelectrodes for Microenvironmental Studies[J]. Anal. Chem., 2002,74(22):5726-5733.
doi: 10.1021/ac020326l
URL
pmid: 12463355
[20]
Casella I G, Contursi M, Toniolo R. Anodic electrodeposition of iridium oxide particles on glassy carbon surfaces and their electrochemical/SEM/XPS characterization[J]. J. Electroanal. Chem., 2015,736:147-152.
doi: 10.1016/j.jelechem.2014.11.012
URL
[21]
Petit M A, Plichon V. Anodic electrodeposition of iridium oxide films[J]. J. Electroanal. Chem., 1998,444(2):247-252.
doi: 10.1016/S0022-0728(97)00570-6
URL
[22] Zhang X(张新), Luo Y H(罗远辉), Li X Y(李兴彦). Effect of some factors in iridium plating on electroplated coating surface[J]. Met. Funct. Mater. (金属功能材料), 2012(4):46-49.
[23]
Shi Y H, Meng H M. Electrochemical behavior of IrO2 electrodes in the anodic electrodeposition of MnO2[J]. Acta Phys.-Chim. Sin., 2011,27(2):461-467.
doi: 10.3866/PKU.WHXB20110216
URL
[24] Wang J P(王锦鹏), Zhong X M(钟学明), Teng L J(滕乐金), Zhao Y(赵洋). Discussion on removal of the micropotassium from the solution of dihydrogen hexachloroiridate(IV)[J]. G D Chem. (广东化工), 2008,35(7):23-26.
[25] Kakooei S, Ismail M C, Wahjoedi B A. Electrochemical study of iridium oxide coating on stainless steel substrate[J]. Int. J. Electrochem. Sci., 2013,8(3):3290-3301.
[26]
Zhao C X, Yu H T, Li Y C, Li X H, Ding L, Fan L Z. Electrochemical controlled synjournal and characterization of well-aligned IrO2 nanotube arrays with enhanced electrocatalytic activity toward oxygen evolution reaction[J]. J. Electroanal. Chem., 2013,688:269-274.
doi: 10.1016/j.jelechem.2012.08.032
URL
[27] Sun Z H(孙志华), Liu Y H(刘佑厚), Zhang X Y(张晓云), Tang Z H(汤智慧), Liu M H(刘明辉). A review of electroplating technology on titanium and titanium alloys[J]. Corros. Sci. Prot. Technol. (腐蚀与防护), 2005,26(11):493-496.
[28]
Yan Z W, Zhao Y W, Zhang Z Z, Li G, Li H C, Wang J S, Feng Z Q, Tang M Q, Yuan X J, Zhang R Z, Du Y Y. A study on the performance of IrO2-Ta2O5 coated anodes with surface treated Ti substrates[J]. Electrochim. Acta, 2015,157:345-350.
doi: 10.1016/j.electacta.2015.01.005
URL
[29]
Aravind P, Selvaraj H, Ferro S, Sundaram M. An integrated (electro and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment[J]. J. Hazard. Mater., 2016,318(15):203-215.
doi: 10.1016/j.jhazmat.2016.07.028
URL
[30]
Huang C A, Yang S W, Lai P L. Effect of precursor baking on the electrochemical properties of IrO2-Ta2O5/Ti anodes[J]. Surf. Coat. Technol., 2018,350:896-903.
doi: 10.1016/j.surfcoat.2018.03.095
URL
[31] Nishanthi S T, Iyyapushpam S, Padiyan D P. Role of water content in anodization of titanium to fabricate TiO2 nanotubes and its properties[C]// IEEE, International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), Chennai, INDIA, Jul 24-27, 2013: 320-323.
[32]
Alves S A, Patel S B, Sukotjo C, Mathew M T, Filho P N, Celis J P, Rocha L A, Shokuhfar T. Synjournal of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface[J]. Appl. Surf. Sci., 2017,399:682-701.
doi: 10.1016/j.apsusc.2016.12.105
URL
[33]
Wu D D, Wu X, Zhang Y L. A study on Ti anodic pretreatment for improving the stability of electrodeposited IrO2 electrode[J]. Electrochim. Acta, 2020,338:135793.
doi: 10.1016/j.electacta.2020.135793
URL
[34] Zhang X(张新), Luo Y H(罗远辉), Li X Y(李兴彦). Research progress of iridium electroplating technology[J]. Met. Funct. Mater. (金属功能材料), 2012,2:58-61.
[35]
Steegstra P, Ahlberg E. Involvement of nanoparticles in the electrodeposition of hydrous iridium oxide films[J]. Electrochim. Acta, 2012,68:206-213.
doi: 10.1016/j.electacta.2012.02.058
URL
[36] Meyer R D, Nguyen T H, Twardoch U M, Rauh R D. Electrodeposition of iridium oxide charge injection electrodes[C]// Proceedings of the First Joint BMES/EMBS Conference, October 13-16, 1999, Atlanta, GA, USA. IEEE, c1999:0-1
[37]
Yamanaka K. The electrochemical behavior of anodically electrodeposited iridium oxide films and the reliability of transmittance variable cells[J]. Jpn. J. Appl. Phys., 1991,30(6):1285-1289.
doi: 10.1143/JJAP.30.1285
URL
[38]
Yousefpour M, Shokuhy A. Electrodeposition of TiO2-RuO2-IrO2 coating on titanium substrate[J]. Superlattices Microstruct., 2012,51(6):842-853.
doi: 10.1016/j.spmi.2012.03.024
URL
pmid: 25276006
[39] Wang W D(王维大), Feng Y L(冯雅丽), Li H R(李浩然), Cai Z L(蔡震雷). Electrodeposition of manganese dioxide on Ti-IrO2 anode in acidic nitrate medium[J]. J. Northeast. Univ. (东北大学学报), 2014,35(2):249-252.
[40]
Lattach Y, Rivera J F, Bamine T, Deronzier A, Moutet J C. Iridium oxide-polymer nanocomposite electrode materials for water oxidation[J]. ACS Appl. Mater. Interfaces, 2014,6(15):12852-12859.
doi: 10.1021/am5027852
URL
pmid: 25045786
[41]
Salimi A, Alizadeh V, Compton R G. Disposable amperometric sensor for neurotransmitters based on screen-printed electrodes modified with a thin iridium oxide film[J]. Anal. Sci., 2005,21(11):1275-1280.
doi: 10.2116/analsci.21.1275
URL
pmid: 16317893
[42] Guo W J(郭文君), Li Z Q(李紫琼), Ke R H(柯若昊), Niu D F(钮东方), Xu H(徐衡), Zhang X S(张新胜). A study of pluse electrodeposition on suppressing the formation of lithium dendrite[J]. J. Electrochem. (电化学), 2018,24(3):246-252.
[43]
Herrada R A, Acosta-Santoyo G, Sepúlveda-Guzmán S, Brillas E, Sires I, Bustos E. IrO2 Ta2O5 |Ti electrodes prepared by electrodeposition from different Ir:Ta ratios for the degradation of polycyclic aromatic hydrocarbons[J]. Electrochim. Acta, 2018,263:353-361.
doi: 10.1016/j.electacta.2018.01.056
URL
[44] Jiang B(蒋孛), Zhang L N(张莉娜), Qin X X(秦先贤), Cai W B(蔡文斌). Electrodeposition of RuO2 layers on TiO2 nanotube array toward CO2 electroreduction[J]. J. Electrochem. (电化学), 2017,23(2):238-244.
[45]
Van Pham C, Buhler M, Knoppel J, Bierling M, Seeberger D, Escalera-Lopez D, Mayrhofer K J J, Cherevko S, Thiele S. IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers[J]. Appl. Catal. B - Environ., 2020,269:118762.
doi: 10.1016/j.apcatb.2020.118762
URL
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons