Abstract
The electronic structures and properties of nano-semiconductors are quite different from those of bulk semiconductors due to the nano-size effect (such as quantum size effect). Moreover, when the nano-semiconductor materials are deposited onto the substrate to construct a device, their electronic properties are also affected by the substrate or other components, which may lead to different performances of nano-semiconductors based photoelectric devices, and consequently, different corresponding characterization methods are needed. The combination of photocurrent spectroscopy, photoluminescence spectroscopy with UV-Vis absorption spectroscopy can provide a more comprehensive characterization for the electronic properties and photoelectrochemical performances of nano-semiconductors in photoelectric devices. Our research group has long devoted to the studies in the preparations and characterizations of different nano-semiconductors for photoelectric devices. In this review, we firstly introduce the main different features in electronic properties of nano-semiconductors and the corresponding characterization methods, and then describe how to combine the abovementioned three spectroscopic methods to investigate the electronic properties and photoelectrochemical performances of the nano-semiconductors for photovoltaic cells, electroluminescent diodes, and other photocatalytic systems by detailed examples. Photoluminescence spectroscopy is a common method to characterize the surface states of the semiconductors, while photocurrent spectroscopy can provide the supplementary information of surface states. Especially, the photoluminescence efficiency is low for the nonradiactive recombination dominated materials such as indirect-bandgap semiconductors. The results of photocurrent spectroscopy are more useful under these circumstances. Furthermore, the combined characterization in surface states of the nano-semiconductors by photocurrent spectroscopy with photoluminescence spectroscopy is specially discussed. The combined applications of these three spectroscopic methods for the nano-semiconductors in photoeltric devices are not only beneficial to obtain intensive understanding the electric properties and the photo-induced charge transfer mechanism at the interface of the nano-semiconductors, but also useful to guide the preparation of nano-semiconductor materials for photoelectric devices and optimal to the photoelectrochemical performances.
Graphical Abstract
Keywords
photocurrent spectroscopy, photoluminescence spectroscopy, UV-Vis absorption spectroscopy, nano-semiconductors
Publication Date
2021-02-28
Online Available Date
2020-08-25
Revised Date
2020-08-04
Received Date
2020-07-28
Recommended Citation
Si-Da Bian, Jian-Zhang Zhou, Zhong-Hua Lin.
Combined Applications of Photocurrent Spectroscopy, Photoluminescence Spectroscopy and UV-Vis Spectroscopy for Nano-Semiconductor Based Photoelectric Devices[J]. Journal of Electrochemistry,
2021
,
27(1): 45-55.
DOI: 10.13208/j.electrochem.200728
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol27/iss1/4
References
[1] Jackson H E, Smith L M. Chapter two - Optical properties of semiconductor nanowires: insights into band structure and carrier dynamics[M]// Semiconductors and Semimetals Elsevier, 2016,94:17-74.
[2]
Wojtyla S, Baran T. Photosensitization and photocurrent switching effects in wide band gap semiconductors: CuI and TiO2 functionalized with iron and nickel complexes: from semiconductors to logic devices[J]. J. Inorg. Organomet. Poly. Mater., 2017,27(2):436-445.
doi: 10.1007/s10904-016-0484-6
URL
[3] Gfroerer T H. Photoluminescence in analysis of surfaces and interfaces[M]. Chichester: John Wiley & Sons Ltd, 2006: 1-2.
[4] Wang F, Liu X K, Gao F. Chapter 1-Fundamentals of solar cells and light-emitting diodes[M]// Advanced nanomaterials for solar cells and light emitting diodes, Amsterdam: Elsevier, 2019: 1-35.
[5]
Makuła P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra[J]. J. Phys. Chem. Lett., 2018,9(23):6814-6817.
doi: 10.1021/acs.jpclett.8b02892
URL
pmid: 30990726
[6]
Kozioł R, Łapiński M, Syty P, Koszelow D, Sadowski W, Sienkiewicz J E, Koscielska B. Evolution of Ag nanostructures created from thin films: UV-vis absorption and its theoretical predictions[J]. Beilstein J. Nanotechnol., 2020,11:494-507.
URL
pmid: 32274288
[7]
Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chem. Rev., 1995,95(1):49-68.
doi: 10.1021/cr00033a003
URL
[8]
Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state[J]. J. Chem. Phys., 1984,80(9):4403-4409.
doi: 10.1063/1.447218
URL
[9]
Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium[J]. Phys. Stat. Sol. (b), 1966,15(2):627-637.
doi: 10.1002/(ISSN)1521-3951
URL
[10] Kubelka P, Munk F. A Contribution to the optics of pigments[J]. J. Techn. Phys., 1931, (12):593-599.
[11]
Gärtner W W. Depletion-layer photoeffects in semiconductors[J]. Phys. Rev., 1959,116(1):84-87.
doi: 10.1103/PhysRev.116.84
URL
[12]
Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Appl. Phys. Lett., 1990,57(10):1046-1048.
doi: 10.1063/1.103561
URL
[13]
Feng Z F, Zhang Q B, Lin L L, Quo H H, Zhou J Z, Lin Z H. <0001>-preferential growth of cdse nanowires on conducting glass: Template-free electrodeposition and application in photovoltaics[J]. Chem. Mater., 2010,22(9):2705-2710.
doi: 10.1021/cm901703d
URL
[14]
Yuhas B D, Yang P. Nanowire-based all-oxide solar cells[J]. J. Am. Chem. Soc., 2009,131(10):3756-3761.
URL
pmid: 19275263
[15]
Jiang Q L, Sheng X, Li Y X, Feng X J, Xu T. Rutile TiO2 nanowire-based perovskite solar cells[J]. Chem. Commun., 2014,50(94):14720-14723.
doi: 10.1039/C4CC07367C
URL
[16]
Consonni V, Briscoe J, Kärber E, Li X, Cossuet T. ZnO nanowires for solar cells: a comprehensive review[J]. Nanotechnology, 2019,30(36):362001.
doi: 10.1088/1361-6528/ab1f2e
URL
pmid: 31051478
[17]
Yang X, Li H, Zhang W, Sun M X, Li L Q, Xu N, Wu J D, Sun J. High visible photoelectrochemical activity of Ag nanoparticle-sandwiched CdS/Ag/ZnO nanorods[J]. ACS Appl. Mater. Inter., 2017,9(1):658-667.
doi: 10.1021/acsami.6b12259
URL
[18]
Lam K T, Hsiao Y J, Ji L W, Fang T H, Hsiao K H, Chu T T. High-sensitive ultraviolet photodetectors based on ZnO nanorods/CdS heterostructures[J]. Nanoscale Res. Lett., 2017,12(1):31.
doi: 10.1186/s11671-016-1818-6
URL
[19]
Sheng P T, Yao L, Yang P, Yang D F, Lu C K, Cao K S, Li W L. The origin of enhanced photoelectrochemical activity in metal-ion-doped ZnO/CdS quantum dots[J]. J. Alloy. Compd., 2020,822:153700.
doi: 10.1016/j.jallcom.2020.153700
URL
[20]
Ben Taieb S, Pham Truong T N, Chaguetmi S, Ben Naceur J, Bardaoui A, Gannouni M, Decorse P, Mouton L, Nowak S, Mammeri F, Chtourou R, Ammar S. An easy-to achieve approach for the fabrication of CdS QDs sensitized TiO2 nanotubes and their enhanced photoelectrochemical performance[J]. J. Photochem. Photobiol.-Chem., 2017,332:337-344.
doi: 10.1016/j.jphotochem.2016.09.001
URL
[21]
Zhang Q B(张桥保), Feng Z F(冯增芳), Han N N(韩楠楠). Preparation and photoeletrochemical performance of CdS quantum dot sensitized ZnO nanorod array electrodes[J]. Acta Phys.-Chem. Sin. (物理化学学报), 2010,26(11):2927-2934.
doi: 10.3866/PKU.WHXB20101113
URL
[22]
Lu J F, Zhu Q X, Zhu Z, Liu Y J, Wei M, Shi Z L, Xu C X. Plasmon-mediated exciton-phonon coupling in a ZnO microtower cavity[J]. J. Mater. Chem. C, 2016,4(33):7718-7723.
doi: 10.1039/C6TC02288J
URL
[23]
Wang J J, Wu X J, He Y H, Guo W, Zhang Q H, Wang Y, Wang Z H. Investigation of the electronic structure of CdS nanoparticles with sum frequency generation and photoluminescence spectroscopy[J]. J. Phys. Chem. C, 2019,123(45):27712-27716.
doi: 10.1021/acs.jpcc.9b09750
URL
[24]
Wang Z L. Splendid one-dimensional nanostructures of zinc oxide: A new nanomaterial family for nanotechnology[J]. ACS Nano, 2008,2(10):1987-1992.
URL
pmid: 19206442
[25]
Voss T, Waldvogel S R. Hybrid LEDs based on ZnO nanowire structures[J]. Mat. Sci. Semicon. Proc., 2017,69:52-56.
doi: 10.1016/j.mssp.2016.11.027
URL
[26]
Qiao S, Liu J H, Fu G S, Ren K L, Li Z Q, Wang S F, Pan C F. ZnO nanowire based CIGS solar cell and its efficiency enhancement by the piezo-phototronic effect[J]. Nano Energy, 2018,49:508-514.
doi: 10.1016/j.nanoen.2018.04.070
URL
[27]
Guo H H, Lin Z H, Feng Z F, Lin L L, Zhou J Z. White-light-emitting diode based on ZnO nanotubes[J]. J. Phys. Chem. C, 2009,113(28):12546-12550.
doi: 10.1021/jp902607c
URL
[28]
Peng W Q, Qu S C, Cong G W, Wang Z G. Synjournal and structures of morphology-controlled ZnO nano- and microcrystals[J]. Cryst. Growth Des., 2006,6(6):1518-1522.
doi: 10.1021/cg0505261
URL
[29]
Xu L F, Liao Q, Zhang J P, Ai X C, Xu D S. Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods[J]. J. Phys. Chem. C, 2007,111(12):4549-4552.
doi: 10.1021/jp068485m
URL
[30]
Van Dijken A, Meulenkamp E A, Vanmaekelbergh D, Meijerink A. emission[J]. J. Lumines., 2000, 87-89:454-456.
doi: 10.1016/S0022-2313(99)00482-2
URL
[31]
Zhang Q B, Guo H H, Feng Z F, Lin L L, Zhou J Z, Lin Z H. n-ZnO nanorods/p-CuSCN heterojunction light-emitting diodes fabricated by electrochemical method[J]. Electrochim. Acta, 2010,55(17):4889-4894.
doi: 10.1016/j.electacta.2010.03.082
URL
[32]
Zheng J W, Mo L E, Chen W C, Jiang L, Ding Y, Li Z Q, Hu L H, Dai S Y. Surface states in TiO2 submicrosphere films and their effect on electron transport[J]. Nano Res., 2017,10(11):3671-3679.
doi: 10.1007/s12274-017-1577-4
URL
[33]
Sachs M, Pastor E, Kafizas A, Durrant J R. Evaluation of surface state mediated charge recombination in anatase and rutile TiO2[J]. J. Phys. Chem. Lett., 2016,7(19):3742-3746.
doi: 10.1021/acs.jpclett.6b01501
URL
pmid: 27564137
[34]
Zawadzki P, Laursen A B, Jacobsen K W, Dahl S. Oxidative trends of TiO2—hole trapping at anatase and rutile surfaces[J]. Energy Environ. Sci., 2012,5(12):9866-9869.
doi: 10.1039/c2ee22721e
URL
[35]
Gao C, Peng Y Q, Hu L H, Mo L E, Zhang X X, Hayat T, Alsaedi A, Dai S Y. A comparative study of the density of surface states in solid and hollow TiO2 microspheres[J]. Inorg. Chem. Front., 2018,5(9):2284-2290.
doi: 10.1039/C8QI00633D
URL
[36]
Sudhagar P, Devadoss A, Nakata K, Terashima C, Fujishima A. Enhanced photoelectrocatalytic water splitting at hierarchical Gd3+:TiO2 nanostructures through amplifying light reception and surface states passivation[J]. J. Electrochem. Soc., 2014,162(3):H108-H114.
doi: 10.1149/2.0161503jes
URL
[37]
Guo Q, Zhou C Y, Ma Z B, Yang X M. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges[J]. Adv. Mater., 2019,31(50):1901997.
doi: 10.1002/adma.v31.50
URL
[38]
Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nat. Photonics, 2014,8(2):95-103.
doi: 10.1038/nphoton.2013.238
URL
[39]
Linic S, Christopher P, Ingram D B. Plasmonic-metal nano-structures for efficient conversion of solar to chemical energy[J]. Nat. Mater., 2011,10(12):911-921.
URL
pmid: 22109608
[40]
Liu Z, Hou W, Pavaskar P, Aykol M, Cronin S B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination[J]. Nano Lett., 2011,11(3):1111-1116.
doi: 10.1021/nl104005n
URL
pmid: 21319840
[41]
Liu E Z, Kang L M, Wu F, Sun T, Hu X Y, Yang Y H, Liu H C, Fan J. Photocatalytic reduction of CO2 into methanol over Ag/TiO2 nanocomposites enhanced by surface plasmon resonance[J]. Plasmonics, 2014,9(1):61-70.
doi: 10.1007/s11468-013-9598-7
URL
[42] Bian S D(卞斯达). Spectroscopic and photoelectrochemical characterizations of plasmon photocatalytic reaction in Ag-TiO2 nanocomposites[D]. Xiamen University (厦门大学), 2020.
[43]
Varma R S, Thorat N, Fernandes R, Kothari D C, Patel N, Miotello A. Dependence of photocatalysis on charge carrier separation in Ag-doped and decorated TiO2 nano-composites[J]. Catal. Sci. Technol., 2016,6(24):8428-8440.
doi: 10.1039/C6CY01605G
URL
[44]
Ge M Z, Cao C Y, Li S H, Tang Y X, Wang L N, Qi N, Huang J Y, Zhang K Q, Al-Deyab S S, Lai Y K. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting[J]. Nanoscale, 2016,8(9):5226-5234.
doi: 10.1039/c5nr08341a
URL
pmid: 26878901
Included in
Analytical Chemistry Commons, Materials Chemistry Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons