Abstract
In this paper, the electrical properties of molecular junctions formed N,N′-bis(4-thioalkyl)-4,4′-bipyridinium (viologen) moiety between two gold (Au) electrodes have been investigated by combining density functional theory and non-equilibrium Green’s functional approach. To modulate the viologen molecule to be a cation with one and two positive charges (V+ and V2+), we introduce one and two trifluoroacetic acid ions (TFA-) around the molecule, respectively. The valence states of V+ and V2+ are confirmed by checking Mulliken and NBO charges. Then the relationship between molecular conductance and electronic structures of the neutral state V, the radical state V+ and dication V2+ are analyzed in detail. The results in analyzing transmission spectra of the three states reveal that the conductance values of V and V+ are two orders of magnitude larger than that of V2+. This suggests that the redox states of viologen molecules can be used to realize the function of molecular switches. Our calculated results also show that increasing the torsion angle between two pyridine rings of the S-4V4-S molecule will decrease the conductance. By comparing different ions of TFA、PF6 and BF4, the calculated results show that the molecular junction conductance decreases about 3 times when the torsion angle increases by about 6°. It indicates that increasing the torsion angle of the dication V2+ can improve significantly switching ratio of viologen derivatives molecules. At the same time, the calculated results show that increasing the number of methylene groups in alky chains (HS-nVn-SH, n = 2 ~ 7), the conductance values of molecular junctions decrease exponentially, and the attenuation factor of each methylene is about 1 close to alkanedithiol molecules in literatures experimentally and theoretically. This also shows that as the alkyl chain length increases, the DFT-NEGF theoretical method can better predict the zero-bias conductance of the viologen derivative molecule.
Graphical Abstract
Keywords
viologen, redox active center, molecule conductance, density functional theory, non-equilibrium green’s function
Publication Date
2021-02-28
Online Available Date
2020-07-16
Revised Date
2020-07-15
Received Date
2020-06-21
Recommended Citation
Zhuan-Yun Cai, Jia Liu, Si-Yuan Guan, De-Yin Wu, Zhong-Qun Tian.
Theoretical Study on Electrical Properties of Molecular Junctions of Viologen Derivatives[J]. Journal of Electrochemistry,
2021
,
27(1): 92-99.
DOI: In this paper, the electrical properties of molecular junctions formed N,N′-bis(4-thioalkyl)-4,4′-bipyridinium (viologen) moiety between two gold (Au) electrodes have been investigated by combining density functional theory and non-equilibrium Green’s functional approach. To modulate the viologen molecule to be a cation with one and two positive charges (V+ and V2+), we introduce one and two trifluoroacetic acid ions (TFA-) around the molecule, respectively. The valence states of V+ and V2+ are confirmed by checking Mulliken and NBO charges. Then the relationship between molecular conductance and electronic structures of the neutral state V, the radical state V+ and dication V2+ are analyzed in detail. The results in analyzing transmission spectra of the three states reveal that the conductance values of V and V+ are two orders of magnitude larger than that of V2+. This suggests that the redox states of viologen molecules can be used to realize the function of molecular switches. Our calculated results also show that increasing the torsion angle between two pyridine rings of the S-4V4-S molecule will decrease the conductance. By comparing different ions of TFA、PF6 and BF4, the calculated results show that the molecular junction conductance decreases about 3 times when the torsion angle increases by about 6°. It indicates that increasing the torsion angle of the dication V2+ can improve significantly switching ratio of viologen derivatives molecules. At the same time, the calculated results show that increasing the number of methylene groups in alky chains (HS-nVn-SH, n = 2 ~ 7), the conductance values of molecular junctions decrease exponentially, and the attenuation factor of each methylene is about 1 close to alkanedithiol molecules in literatures experimentally and theoretically. This also shows that as the alkyl chain length increases, the DFT-NEGF theoretical method can better predict the zero-bias conductance of the viologen derivative molecule.
Available at: https://jelectrochem.xmu.edu.cn/journal/vol27/iss1/6
References
[1] Moore G E. Cramming more components onto integrated circuits[J]. Electronics, 1965,38(8):114-117.
[2]
Jia C C, Ma B J, Xin N, Guo X F. Carbon electrode-molecule junctions: A reliable platform for molecular electronics[J]. Acc. Chem. Res., 2015,48(9):2565-2575.
doi: 10.1021/acs.accounts.5b00133
URL
pmid: 26190024
[3]
Aviram A, Ratner M A. Molecular rectifiers[J]. Chem. Phys. Lett., 1974,29(2):277-283.
doi: 10.1016/0009-2614(74)85031-1
URL
[4]
Xin N, Guan J X, Zhou C G, et al. Concepts in the design and engineering of single-molecule electronic devices[J]. Nat. Rev. Phys., 2019,1(3):211-230.
doi: 10.1038/s42254-019-0022-x
URL
[5]
Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yan Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity[J]. Science, 2016,352(6292):1443-1445.
doi: 10.1126/science.aaf6298
URL
pmid: 27313042
[6]
Tan Z B, Zhang D, Tian H R, Wu Q Q, Hou S J, Pi J C, Sadeghi H, Tang Z, Yang Y, Liu J Y, Tan Y Z, Chen Z B, Shi J, Xiao Z Y, Lambert C, Xie S Y, Hong W J. Atomically defined angstrom-scale all-carbon junctions[J]. Nat. Commun., 2019,10(1):1748.
doi: 10.1038/s41467-019-09793-8
URL
pmid: 30988310
[7]
Yang Y(杨扬), Liu J Y(刘俊扬), Yan R W(晏润文), Wu D Y(吴德印), Tian Z Q(田中群). Mechanism and characterization of electron transport through metal/molecule/metal junctions[J]. Chem. J. Chin. Univ.-Chin. (高等学校化学学报), 2015,36(1):9-23.
doi: 10.7503/cjcu20140941
URL
[8]
Qi Y H, Guan D R, Liu C B. DFT study of the transport properties of molecular wire at low bias[J]. Chin. J. Chem., 2006,24(3):326-330.
doi: 10.1002/(ISSN)1614-7065
URL
[9] He Y Y(贺园园), Zhao J W(赵健伟). Effects of conformational transformations on electronic transport properties of optical molecular switches: An ab initio study[J]. J. Electrochem. (电化学), 2014,20(3):243-259.
[10]
Zhou C, Li X X, Gong Z L, Jia C C, Lin Y W, Gu C H, He G, Zhong Y W, Yang J L, Guo X F. Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution[J]. Nat. Commun., 2018,9(1):807.
doi: 10.1038/s41467-018-03203-1
URL
pmid: 29476061
[11]
Jöckel F, Watson M D, Müllen K, Rabe J P. Prototypical single-molecule chemical-field-effect transistor with nanometer-sized gates[J]. Phys. Rev. Lett., 2004,92(18):188303.
doi: 10.1103/PhysRevLett.92.188303
URL
pmid: 15169538
[12]
Liu B, Blaszczyk A, Mayor M, Wandlowski T. Redox-switching in a viologen-type adlayer: An electrochemical shell-isolated nanoparticle enhanced raman spectroscopy study on Au(111)-(1×1) single crystal electrodes[J]. ACS Nano, 2011,5(7):5662-5672.
doi: 10.1021/nn201307g
URL
pmid: 21634391
[13]
Li J H, Cheng G J, Dong S J. Electrochemical study of the interfacial characteristics of redox-active viologen thiol self-assembled monolayers[J]. Thin Solid Films, 1997,293(1):200-205.
doi: 10.1016/S0040-6090(96)08995-X
URL
[14]
Osorio H M, Martín S, Milan D C, Gonzalez-Orive A, Gluyas JBG, Higgins S J, Low P J, Nichols R J, Cea P. Influence of surface coverage on the formation of 4,4′-bipyridinium (viologen) single molecular junctions[J]. J. Mater. Chem. C, 2017,5(45):11717-11723.
doi: 10.1039/C7TC03624H
URL
[15] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, revision D. 01[M]. Wallingford, CT; Gaussian, Inc., Wallingford CT, 2009.
[16]
Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys., 1993,98(7):5648-5652.
doi: 10.1063/1.464913
URL
[17] Krishnan R, Binkley J S, Seeger R, Pople J A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions[J]. J. Chem. Phys., 1980,72(1):650-654.
[18]
McLean A D, Chandler G S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18[J]. J. Chem. Phys., 1980,72(10):5639-5648.
doi: 10.1063/1.438980
URL
[19]
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev., 1965,140(4A):A1133-A1138.
doi: 10.1103/PhysRev.140.A1133
URL
[20]
Calais J L. Density-functional theory of atoms and mole-cules[J]. Int. J. Quantum Chem., 1993,47(1):101-101.
doi: 10.1002/qua.560470107
URL
[21]
Becke A D. Perspective: Fifty years of density-functional theory in chemical physics[J]. J. Chem. Phys. , 2014,140(18):18A301.
URL
pmid: 24832308
[22]
Thygesen K S. Electron transport through an interacting region: The case of a nonorthogonal basis set[J]. Phys. Rev. B , 2006,73(3):035309.
doi: 10.1103/PhysRevB.73.035309
URL
[23]
Gruss D, Velizhanin K A, Zwolak M. Landauer's formula with finite-time relaxation: Kramers' crossover in electronic transport[J]. Sci. Rep., 2016,6:24514-24514.
doi: 10.1038/srep24514
URL
pmid: 27094206
[24]
Ernzerhof M, Perdew J P. Generalized gradient approximation to the angle- and system-averaged exchange hole[J]. J. Chem. Phys., 1998,109(9):3313-3320.
doi: 10.1063/1.476928
URL
[25]
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B, 1992,46(11):6671-6687.
doi: 10.1103/PhysRevB.46.6671
URL
[26]
Becke A D. Density functional calculations of molecular bond energies[J]. J. Chem. Phys., 1986,84(8):4524-4529.
doi: 10.1063/1.450025
URL
[27]
Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A, 1988,38(6):3098-3100.
doi: 10.1103/PhysRevA.38.3098
URL
[28]
Hoft R, Ford M, García-Suárez V, Lambert C J. The effect of stretching thiyl- and ethynyl-Au molecular junctions[J]. J. Phys.-Condes. Matter , 2007,20(2):025207.
doi: 10.1088/0953-8984/20/02/025207
URL
[29]
Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Phys. Rev. B, 2001,63(24):245407.
doi: 10.1103/PhysRevB.63.245407
URL
[30]
Meir Y, Wingreen N S. Landauer formula for the current through an interacting electron region[J]. Phys. Rev. Lett., 1992,68(16):2512-2515.
URL
pmid: 10045416
[31]
Kim Y H, Tahir-Kheli J, Schultz P A, Goddard W A. First-principles approach to the charge-transport characteristics of monolayer molecular-electronics devices: Application to hexanedithiolate devices[J]. Phys. Rev. B, 2006,73(23):235419.
doi: 10.1103/PhysRevB.73.235419
URL
[32]
Landauer R, Martin T. Barrier interaction time in tunneling[J]. Rev. Mod. Phys., 1994,66(1):217-228.
doi: 10.1103/RevModPhys.66.217
URL
[33] Datta S. Quantum transport: atom to transistor[M]. Cambridge university press, 2005.
[34]
Haiss W, van Zalinge H, Higgins S J, Bethell D, Hobenreich H, Schiffrin D J, Nichols R J. Redox state dependence of single molecule conductivity[J]. J. Am. Chem. Soc., 2003,125(50):15294-15295.
doi: 10.1021/ja038214e
URL
pmid: 14664565
[35]
Magoga M, Joachim C. Conductance and transparence of long molecular wires[J]. Phys. Rev. B, 1997,56(8):4722-4729.
doi: 10.1103/PhysRevB.56.4722
URL
[36]
Samanta M P, Tian W, Datta S, Kubiak C P. Electronic conduction through organic molecules[J]. Phys. Rev. B, 1996,53(12):R7626-R7629.
doi: 10.1103/PhysRevB.53.R7626
URL
[37]
Li Z, Pobelov I, Han B, Wandlowski T, Blaszczyk A, Mayor M. Conductance of redox-active single molecular junctions: an electrochemical approach[J]. Nanotechnology, 2006,18(4):044018.
doi: 10.1088/0957-4484/18/4/044018
URL
[38]
Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F. Charge transport in single Au | alkanedithiol | Au junctions: coordination geometries and conformational degrees of freedom[J]. J. Am. Chem. Soc., 2008,130(1):318-326.
doi: 10.1021/ja0762386
URL
pmid: 18076172
[39]
Xu B, Tao N J. Measurement of single-molecule resistance by repeated formation of molecular junctions[J]. Science, 2003,301(5637):1221.
doi: 10.1126/science.1087481
URL
pmid: 12947193
[40]
Li X L, He J, Hihath J, Xu B Q, Lindsay S M, Tao N J. Conductance of single alkanedithiols: Conduction mechanism and effect of molecule-electrode contacts[J]. J. Am. Chem. Soc., 2006,128(6):2135-2141.
doi: 10.1021/ja057316x
URL
pmid: 16464116
[41]
Guo S, Hihath J, Díez-Pérez I, Tao N J. Measurement and statistical analysis of single-molecule current-voltage characteristics, transition voltage spectroscopy, and tunneling barrier height[J]. J. Am. Chem. Soc., 2011,133(47):19189-19197.
URL
pmid: 21991939
[42]
Yan R W, Jin X, Guan S Y, Zhang X G, Pang R, Tian Z Q, Wu D Y, Mao B W. Theoretical study of quantum conductance of conjugated and nonconjugated molecular wire junctions[J]. J. Phys. Chem. C, 2016,120(22):11820-11830.
doi: 10.1021/acs.jpcc.6b03116
URL
Included in
Computational Chemistry Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons