Abstract
Electrolyte of lithium-ion battery usually goes through processes of filling, transportation and storage from the completion of manufacture to the use. Understanding the influence of long-term storage process on performance of lithium-ion battery electrolyte is of theoretical significance for production of lithium-ion battery. Scanning electron microscope (SEM) images showed that the solid electrolyte interface (SEI) film formed on the surface of the graphite electrode was thicker in the base electrolyte after 6 months of storage. The charge/discharge test results showed that the reversible cycle capacity and cycle stability (capacity retention rate) of graphite electrode decreased significantly after 6 months of storage. This might be due to the thicker SEI film formed on the surface of the graphite electrode, which in turn led to the instability of the lithium-ion intercalation process. When the base electrolyte containing 200 ppm resveratrol was stored for 6 months, the reversible capacity and cycle performance stability of the graphite electrode were even better than those in fresh base electrolyte. The results of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) idicated that adding 200 ppm resveratrol to the base electrolyte could effectively suppress the decline in the electrochemical performance of the graphite electrode caused by long-term storage of the base electrolyte.
Graphical Abstract
Keywords
lithium-ion battery, electrolyte, graphite electrode, resveratrol
Publication Date
2021-02-28
Online Available Date
2020-07-06
Revised Date
2020-06-28
Received Date
2020-06-08
Recommended Citation
Lei Zhang, Xu-Ping Zhang, Si-Wei Zhang, Quan-Chao Zhuang.
Influence of Resveratrol on Performance of Long-Term Storage’s Lithium-Ion Battery Electrolyte[J]. Journal of Electrochemistry,
2021
,
27(1): 83-91.
DOI: 10.13208/j.electrochem.200607
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol27/iss1/8
References
[1] Zhuang Q C(庄全超), Wu S(武山), Liu W Y(刘文元), Lu Z D(陆兆达), et al. The research of organic electrolyte solutions for Li-ion batteries[J]. J. Electrochem. (电化学), 2001,7(4):23-32.
[2]
An S J, Li J L, Daniel C, Mohanty D, Nagpure S, Wood D L. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016,105(1):52-76.
doi: 10.1016/j.carbon.2016.04.008
URL
[3]
Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem. Rev., 2014,114(23):11503-11618.
URL
pmid: 25351820
[4]
Jiang N, Li B, Ning F H, Xia D G. All boron-based 2D material as anode material in Li-ion batteries[J]. J. Energy Chem., 2018,27(6):1651-1654.
doi: 10.1016/j.jechem.2018.01.026
URL
[5] Tasaki K, Nakamura S. Computer simulation of LiPF6 salt association in Li-ion battery electrolyte in the presence of an anion trapping agent[J]. J. Electrochem. Soc., 2001,148(9):984-988.
[6]
Shimizu M, Koya T, Umeki M, Arai S. Communication intercalation/de-intercalation behavior of Li-ion encapsulated by 12-crown-4-etherinto graphite electrode[J]. J. Electrochem. Soc., 2018,165(13):A3212-A3214.
doi: 10.1149/2.0021814jes
URL
[7]
Saqib N, Ganim C M, Shelton A E, Porter J M . On the decomposition of carbonate-based lithium-ion battery electrolytes studied using operando infrared spectroscopy[J]. J. Electrochem. Soc., 2018,165(16):A4051-A4057.
doi: 10.1149/2.1051816jes
URL
[8]
Bancuta O R, Chilian A, Bancuta I, Setnescu R, Setnescu T, Ion R M. Thermal characterization of resveratrol[J]. Rev. Chim., 2018,69(6):1346-1351.
doi: 10.37358/RC.18.6.6322
URL
[9] Zhuang Q C, Yang Z, Zhang L, Cui Y H . Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Prog. Chem., 2020,32(6):761-791.
[10] Liu W, Shi Y L, Zhuang Q C, Cuiab Y L, Ju Z C, Cui Y H. Ethylene glycol bis(propionitrile) ether as an additive for SEI film formation in lithium-ion batteries[J]. Int. J. Electrochem. Sci., 2020,15(5):4722-4738.
[11] Ren T, Zhuang Q C, Hao Y W, Cui Y L. Influence of electrochemical performance of lithium ion batteries with the adding of LiF and LiCl[J]. Acta Chim. Sin., 2016,74(10):833-838.
[12] Zhao L Y, Bian S L, Ju Z C, Cu Y L, Cui Y H, Shi Y L, Zhuang Q C. Adiponitrile as a novel electrolyte additive for high-voltage lithium-ion batteries[J]. Int. J. Electrochem. Sci., 2019,14(10):9755-9773.
[13] Zuo W Q, Cui Y L, Zhuang Q C, Shi Y L, Ying P Z, Cui Y H. Effect of N-N dimethyltrifluoroacetamide additive on low temperature performance of graphite anode[J]. Int. J. Electrochem. Sci., 2019,15(1):382-393.
[14]
Liu J Q, Zhuang Q C, Shi Y L, Yan X D, Zhao X, Chen X B. Tertiary butyl hydroquinone as a novel additive for SEI film formation in lithium-ion batteries[J]. RSC Adv., 2016,6(49):42885-42891.
doi: 10.1039/C6RA04839K
URL
[15]
Levi M D, Aurbach D. Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium[J]. J. Phys. Chem. B, 1997,101(23):4630-4640.
doi: 10.1021/jp9701909
URL
[16]
Levi M D, Aurbach D. Impedance spectra of porous, composite intercalation electrodes: the origin of the low-frequency semicircles[J]. J. Power Sources, 2005,146(1/2):727-731.
doi: 10.1016/j.jpowsour.2005.03.164
URL
[17]
Deng X, Xie K, Li L, Zhou W, Sunarso J, Shao Z P. Scalable synjournal of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries[J]. Carbon, 2016,107(1):67-73.
doi: 10.1016/j.carbon.2016.05.052
URL
[18]
Deng X, Zhao B T, Zhu L, Shao Z P. Molten salt synjournal of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors[J]. Carbon, 2015,93(1), 48-58.
doi: 10.1016/j.carbon.2015.05.031
URL
[19]
Xu S D(徐守冬), Zhuang Q C(庄全超), Shi Y L(史月丽), Zhu Y B(朱亚波), Qiu X Y(邱祥云), Sun Z(孙智). Electrochemical impedance spectra of intercalation compound electrodes: models and theoretical simulations[J]. Acta Phys.-Chim. Sin. (物理化学学报), 2011,27(10):2353-2359.
doi: 10.3866/PKU.WHXB20111004
URL
[20]
Xu S D, Zhuang Q C, Tian L L, Qin Y P, Fang L, Sun S G. Impedance spectra of nonhomogeneous, multilayered porous composite graphite electrodes for Li-ion batteries: experimental and theoretical studies[J]. J. Phys. Chem. C, 2011,115(18):9210-9219.
doi: 10.1021/jp107406s
URL
[21]
Zhuang Q C, Li J, Tian L L. Potassium carbonate as film forming electrolyte additive for lithium-ion batteries[J]. J. Power Sources, 2013,222(15):177-183.
doi: 10.1016/j.jpowsour.2012.08.050
URL
[22] Zhao X, Zhuang Q C, Xu S D, Xu Y X, Shi Y L, Zhang X X. A new insight into the content effect of fluoroethylene carbonate as a film forming additive for lithium-ion batteries[J]. Int. J. Electrochem Sci., 2015,10(3):2515-2534.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons