Abstract
A high-density (5.7 × 108 cm-2) nanoelectrode array with the electrode diameter of 200 nm and the interelectrode distance of 450 nm were fabricated. The nanoelectrode array consisted of gold nanowires embedded in a porous anodic aluminum oxide (AAO) matrix, having regular nanoelectrode distribution and highly uniform nanoelectrode size. The gold nanoelectrode array was used as a closed bipolar nanoelectrode array combined with electrochemiluminescence (ECL) method to map the electrocatalytic activity of platinum nanoparticles toward hydrogen evolution reaction (HER) by modifying the catalysts on single nanoelectrodes. Results show that HER on single bipolar nanoelectrodes could be imaged with the sub-micrometer spatial resolution. The present approach offers a platform to image local electrochemical activity of electrocatalytic materials, energy materials and cellular processes with high spatial resolution.
Graphical Abstract
Keywords
nanoelectrode array, bipolar electrode, electrochemiluminescence imaging, electrochemical imaging, single platinum nanoparticles, hydrogen evolution reaction
Publication Date
2021-04-28
Online Available Date
2021-03-27
Revised Date
2021-03-24
Received Date
2021-02-14
Recommended Citation
Xiang Qin, Zhong-Qiu Li, Jian-Bin Pan, Jian Li, Kang Wang, Xing-Hua Xia.
Electrochemiluminescence Imaging Hydrogen Evolution Reaction on Single Platinum Nanoparticles Using a Bipolar Nanoelectrode Array[J]. Journal of Electrochemistry,
2021
,
27(2): 157-167.
DOI: A high-density (5.7 × 108 cm-2) nanoelectrode array with the electrode diameter of 200 nm and the interelectrode distance of 450 nm were fabricated. The nanoelectrode array consisted of gold nanowires embedded in a porous anodic aluminum oxide (AAO) matrix, having regular nanoelectrode distribution and highly uniform nanoelectrode size. The gold nanoelectrode array was used as a closed bipolar nanoelectrode array combined with electrochemiluminescence (ECL) method to map the electrocatalytic activity of platinum nanoparticles toward hydrogen evolution reaction (HER) by modifying the catalysts on single nanoelectrodes. Results show that HER on single bipolar nanoelectrodes could be imaged with the sub-micrometer spatial resolution. The present approach offers a platform to image local electrochemical activity of electrocatalytic materials, energy materials and cellular processes with high spatial resolution.
Available at: https://jelectrochem.xmu.edu.cn/journal/vol27/iss2/1
References
[1]
Tao B L, Yule L C, Daviddi E, Bentley C L, Unwin P R. Correlative electrochemical microscopy of Li-ion (De)intercalation at a series of individual LiMn2O4 particles[J]. Angew. Chem. Int. Ed., 2019,58(14):4606-4611.
doi: 10.1002/anie.v58.14
URL
[2]
Sharel P E, Kang M, Wilson P, Meng L C, Perry D, Basile A, Unwin P R. High resolution visualization of the redox activity of Li2O2 in non-aqueous media: conformal layer vs. toroid structure[J]. Chem. Commun., 2018,54(24):3053-3056.
doi: 10.1039/C7CC09957F
URL
[3]
Takahashi Y, Kumatani A, Munakata H, Inomata H, Ito K, Ino K, Shiku H, Unwin P R, Korchev Y E, Kanamura K, Matsue T. Nanoscale visualization of redox activity at lithium-ion battery cathodes[J]. Nat. Commun., 2014,5:5450.
doi: 10.1038/ncomms6450
pmid: 25399818
[4]
Jiang D, Jiang Y Y, Li Z M, Liu T, Wo X, Fang Y M, Tao N J, Wang W, Chen H Y. Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling[J]. J. Am. Chem. Soc., 2016,139(1):186-192.
doi: 10.1021/jacs.6b08923
URL
[5]
Bucher E S, Wightman R M. Electrochemical analysis of neurotransmitters[J]. Annu. Rev. Anal. Chem., 2015,8:239-261.
doi: 10.1146/annurev-anchem-071114-040426
URL
[6]
Zhang J J, Zhou J Y, Pan R R, Jiang D C, Burgess J D, Chen H Y. New frontiers and challenges for single-cell electrochemical analysis[J]. ACS. Sens., 2018,3(2):242-250.
doi: 10.1021/acssensors.7b00711
URL
[7]
Lin T E, Rapino S, Girault H H, Lesch A. Electrochemical imaging of cells and tissues[J]. Chem. Sci., 2018,9(20):4546-4554.
doi: 10.1039/C8SC01035H
URL
[8]
Bentley C L, Kang M, Unwin P R. Nanoscale surface structure-activity in electrochemistry and electrocatalysis[J]. J. Am. Chem. Soc., 2019,141(6):2179-2193.
doi: 10.1021/jacs.8b09828
URL
[9]
Bentley C L, Kang M, Unwin P R. Nanoscale structure dynamics within electrocatalytic materials[J]. J. Am. Chem. Soc., 2017,139(46):16813-16821.
doi: 10.1021/jacs.7b09355
URL
[10] Kim J, Renault C, Nioradze N, Arroyo-Curras N, Leonard K C, Bard A J. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy[J]. J. Am. Chem. Soc., 2016,13(27):8560-8568.
[11]
Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015[J]. Chem. Rev., 2016,116(22):13234-13278.
doi: 10.1021/acs.chemrev.6b00067
URL
[12]
Kai T, Zoski C G, Bard A J. Scanning electrochemical microscopy at the nanometer level[J]. Chem. Commun., 2018,54(16):1934-1947.
doi: 10.1039/C7CC09777H
URL
[13]
Kang M, Perry D, Bentley C L, West G, Page A, Unwin P R. Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles[J]. ACS Nano, 2017,11(9):9525-9535.
doi: 10.1021/acsnano.7b05435
URL
[14]
Daviddi E, Gonos K L, Colburn A W, Bentley C L, Unwin P R. Scanning electrochemical cell microscopy (SECCM) chronopotentiometry: Development and applications in electroanalysis and electrocatalysis[J]. Anal. Chem., 2019,91(14):9229-9237.
doi: 10.1021/acs.analchem.9b02091
[15]
Audebert P, Miomandre F. Electrofluorochromism: from molecular systems to set-up and display[J]. Chem. Sci., 2013,4(2):575-584.
doi: 10.1039/C2SC21503A
URL
[16]
Sambur J B, Chen T Y, Choudhary E, Chen G, Nissen E J, Thomas E M, Zou N, Chen P. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes[J]. Nature, 2016,530(7588):77-80.
doi: 10.1038/nature16534
URL
[17] Bouffier L, Doneux T. Coupling electrochemistry with in situ fluorescence (confocal) microscopy[J]. Curr. Opin. Electrochem., 2017,6(1):31-37.
[18]
Zhu M J, Pan J B, Wu Z Q, Gao X Y, Zhao W, Xia X H, Xu J J, Chen H Y. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au-Pt Janus nano-particle[J]. Angew. Chem. Int. Ed., 2018,57(15):4010-4014.
doi: 10.1002/anie.201800706
URL
[19]
Valenti G, Scarabino S, Goudeau B, Lesch A, Jovic M, Villani E, Sentic M, Rapino S, Arbault S, Paolucci F, Sojic N. Single cell electrochemiluminescence imaging: from the proof-of-concept to disposable device-based analysis[J]. J. Am. Chem. Soc., 2017,139(46):16830-16837.
doi: 10.1021/jacs.7b09260
URL
[20]
Voci S, Goudeau B, Valenti G, Lesch A, Jovic M, Rapino S, Paolucci F, Arbault S, Sojic N. Surface-confined electrochemiluminescence microscopy of cell membranes[J]. J. Am. Chem. Soc., 2018,140(44):14753-14760.
doi: 10.1021/jacs.8b08080
URL
[21]
Zhou J Y, Ma G Z, Chen Y, Fang D J, Jiang D C, Chen H Y. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol[J]. Anal. Chem., 2015,87(16):8138-8143.
doi: 10.1021/acs.analchem.5b00542
URL
[22]
Guerrette J P, Percival S J, Zhang B. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity[J]. J. Am. Chem. Soc., 2013,135(2):855-861.
doi: 10.1021/ja310401b
URL
[23]
Anderson T J, Defnet P A, Zhang B. Electrochemiluminescence (ECL) - based electrochemical imaging using a massive array of bipolar ultramicroelectrodes[J]. Anal. Chem., 2020,92(9):6748-6755.
doi: 10.1021/acs.analchem.0c00921
URL
[24]
Iwama T, Inoue K Y, Abe H, Matsue T. Chemical imaging using a closed bipolar electrode array[J]. Chem. Lett., 2018,47(7):843-845.
doi: 10.1246/cl.180303
URL
[25]
Iwama T, Inoue K Y, Abe H, Matsue T, Shiku H. Bioimaging using bipolar electrochemical microscopy with improved spatial resolution[J]. Analyst, 2020,145(21):6895-6900.
doi: 10.1039/D0AN00912A
URL
[26]
Qin X, Li Z Q, Zhou Y, Pan J B, Li J, Wang K, Xu J J, Xia X H. Fabrication of high-density and superuniform gold nanoelectrode arrays for electrochemical fluorescence imaging[J]. Anal. Chem., 2020,92(19):13493-13499.
doi: 10.1021/acs.analchem.0c02918
URL
[27]
Hurst S J, Payne E K, Qin L, Mirkin C A. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods[J]. Angew. Chem. Int. Ed., 2006,45(17):2672-2692.
doi: 10.1002/(ISSN)1521-3773
URL
[28]
Peinetti A S, Gilardoni R S, Mizrahi M, Requejo F G, Gonzalez G A, Battaglini F. Numerical simulation of the diffusion processes in nanoelectrode arrays using an axial neighbor symmetry approximation[J]. Anal. Chem., 2016,88(11):5752-5759.
doi: 10.1021/acs.analchem.6b00039
URL
[29]
Zu Y, Bard A J. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium Tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity[J]. Anal. Chem., 2000,72(14):3223-3232.
doi: 10.1021/ac000199y
URL
[30]
Pan S, Liu J, Hill C M. Observation of local redox events at individual Au nanoparticles using electrogenerated chemiluminescence microscopy[J]. J. Phys. Chem. C, 2015,119(48):27095-27103.
doi: 10.1021/acs.jpcc.5b06829
URL
[31]
Wilson A J, Marchuk K, Willets K A. Imaging electrogenerated chemiluminescence at single gold nanowire electrodes[J]. Nano. Lett., 2015,15(9):6110-6115.
doi: 10.1021/acs.nanolett.5b02383
URL
[32]
Valenti G, Fiorani A, Li H, Sojic N, Paolucci F. Essential role of electrode materials in electrochemiluminescence applications[J]. ChemElectroChem, 2016,3(12):1990-1997.
doi: 10.1002/celc.v3.12
URL
[33]
Li F, Zu Y. Effect of nonionic fluorosurfactant on the electrogenerated chemiluminescence of the tris(2,2'-bipy-ridine)ruthenium(II)/Tri-n-propylamine system: lower oxidation potential and higher emission intensity[J]. Anal. Chem., 2004,76(6):1768-1772.
doi: 10.1021/ac035181c
URL
[34]
Yin H J, Zhao S L, Zhao K, Muqsit A, Tang H J, Chang L, Zhao H J, Gao Y, Tang Z Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity[J]. Nat. Commun., 2015,6:6430.
doi: 10.1038/ncomms7430
URL
[35]
Cheng N, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B, Li R, Sham T K, Liu L M, Botton G A, Sun X L. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nat. Commun., 2016,7:13638.
doi: 10.1038/ncomms13638
URL
[36]
Liu S F, Zhang X, Yu Y M, Zou G Z. A monochromatic electrochemiluminescence sensing strategy for dopamine with dual-stabilizers-capped CdSe quantum dots as emitters[J]. Anal. Chem., 2014,86(5):2784-2788.
doi: 10.1021/ac500046s
URL
[37]
Wei H, Wang E K. Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium[J]. TRAC-Trend Anal. Chem., 2008,27(5):447-459.
doi: 10.1016/j.trac.2008.02.009
URL
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons