Corresponding Author

Xing-Hua Xia(xhxia@nju.edu.cn)


A high-density (5.7 × 108 cm-2) nanoelectrode array with the electrode diameter of 200 nm and the interelectrode distance of 450 nm were fabricated. The nanoelectrode array consisted of gold nanowires embedded in a porous anodic aluminum oxide (AAO) matrix, having regular nanoelectrode distribution and highly uniform nanoelectrode size. The gold nanoelectrode array was used as a closed bipolar nanoelectrode array combined with electrochemiluminescence (ECL) method to map the electrocatalytic activity of platinum nanoparticles toward hydrogen evolution reaction (HER) by modifying the catalysts on single nanoelectrodes. Results show that HER on single bipolar nanoelectrodes could be imaged with the sub-micrometer spatial resolution. The present approach offers a platform to image local electrochemical activity of electrocatalytic materials, energy materials and cellular processes with high spatial resolution.

Graphical Abstract


nanoelectrode array, bipolar electrode, electrochemiluminescence imaging, electrochemical imaging, single platinum nanoparticles, hydrogen evolution reaction

Publication Date


Online Available Date


Revised Date


Received Date



[1] Tao B L, Yule L C, Daviddi E, Bentley C L, Unwin P R. Correlative electrochemical microscopy of Li-ion (De)intercalation at a series of individual LiMn2O4 particles[J]. Angew. Chem. Int. Ed., 2019,58(14):4606-4611.
doi: 10.1002/anie.v58.14 URL

[2] Sharel P E, Kang M, Wilson P, Meng L C, Perry D, Basile A, Unwin P R. High resolution visualization of the redox activity of Li2O2 in non-aqueous media: conformal layer vs. toroid structure[J]. Chem. Commun., 2018,54(24):3053-3056.
doi: 10.1039/C7CC09957F URL

[3] Takahashi Y, Kumatani A, Munakata H, Inomata H, Ito K, Ino K, Shiku H, Unwin P R, Korchev Y E, Kanamura K, Matsue T. Nanoscale visualization of redox activity at lithium-ion battery cathodes[J]. Nat. Commun., 2014,5:5450.
doi: 10.1038/ncomms6450 pmid: 25399818

[4] Jiang D, Jiang Y Y, Li Z M, Liu T, Wo X, Fang Y M, Tao N J, Wang W, Chen H Y. Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling[J]. J. Am. Chem. Soc., 2016,139(1):186-192.
doi: 10.1021/jacs.6b08923 URL

[5] Bucher E S, Wightman R M. Electrochemical analysis of neurotransmitters[J]. Annu. Rev. Anal. Chem., 2015,8:239-261.
doi: 10.1146/annurev-anchem-071114-040426 URL

[6] Zhang J J, Zhou J Y, Pan R R, Jiang D C, Burgess J D, Chen H Y. New frontiers and challenges for single-cell electrochemical analysis[J]. ACS. Sens., 2018,3(2):242-250.
doi: 10.1021/acssensors.7b00711 URL

[7] Lin T E, Rapino S, Girault H H, Lesch A. Electrochemical imaging of cells and tissues[J]. Chem. Sci., 2018,9(20):4546-4554.
doi: 10.1039/C8SC01035H URL

[8] Bentley C L, Kang M, Unwin P R. Nanoscale surface structure-activity in electrochemistry and electrocatalysis[J]. J. Am. Chem. Soc., 2019,141(6):2179-2193.
doi: 10.1021/jacs.8b09828 URL

[9] Bentley C L, Kang M, Unwin P R. Nanoscale structure dynamics within electrocatalytic materials[J]. J. Am. Chem. Soc., 2017,139(46):16813-16821.
doi: 10.1021/jacs.7b09355 URL

[10] Kim J, Renault C, Nioradze N, Arroyo-Curras N, Leonard K C, Bard A J. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy[J]. J. Am. Chem. Soc., 2016,13(27):8560-8568.

[11] Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015[J]. Chem. Rev., 2016,116(22):13234-13278.
doi: 10.1021/acs.chemrev.6b00067 URL

[12] Kai T, Zoski C G, Bard A J. Scanning electrochemical microscopy at the nanometer level[J]. Chem. Commun., 2018,54(16):1934-1947.
doi: 10.1039/C7CC09777H URL

[13] Kang M, Perry D, Bentley C L, West G, Page A, Unwin P R. Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles[J]. ACS Nano, 2017,11(9):9525-9535.
doi: 10.1021/acsnano.7b05435 URL

[14] Daviddi E, Gonos K L, Colburn A W, Bentley C L, Unwin P R. Scanning electrochemical cell microscopy (SECCM) chronopotentiometry: Development and applications in electroanalysis and electrocatalysis[J]. Anal. Chem., 2019,91(14):9229-9237.
doi: 10.1021/acs.analchem.9b02091

[15] Audebert P, Miomandre F. Electrofluorochromism: from molecular systems to set-up and display[J]. Chem. Sci., 2013,4(2):575-584.
doi: 10.1039/C2SC21503A URL

[16] Sambur J B, Chen T Y, Choudhary E, Chen G, Nissen E J, Thomas E M, Zou N, Chen P. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes[J]. Nature, 2016,530(7588):77-80.
doi: 10.1038/nature16534 URL

[17] Bouffier L, Doneux T. Coupling electrochemistry with in situ fluorescence (confocal) microscopy[J]. Curr. Opin. Electrochem., 2017,6(1):31-37.

[18] Zhu M J, Pan J B, Wu Z Q, Gao X Y, Zhao W, Xia X H, Xu J J, Chen H Y. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au-Pt Janus nano-particle[J]. Angew. Chem. Int. Ed., 2018,57(15):4010-4014.
doi: 10.1002/anie.201800706 URL

[19] Valenti G, Scarabino S, Goudeau B, Lesch A, Jovic M, Villani E, Sentic M, Rapino S, Arbault S, Paolucci F, Sojic N. Single cell electrochemiluminescence imaging: from the proof-of-concept to disposable device-based analysis[J]. J. Am. Chem. Soc., 2017,139(46):16830-16837.
doi: 10.1021/jacs.7b09260 URL

[20] Voci S, Goudeau B, Valenti G, Lesch A, Jovic M, Rapino S, Paolucci F, Arbault S, Sojic N. Surface-confined electrochemiluminescence microscopy of cell membranes[J]. J. Am. Chem. Soc., 2018,140(44):14753-14760.
doi: 10.1021/jacs.8b08080 URL

[21] Zhou J Y, Ma G Z, Chen Y, Fang D J, Jiang D C, Chen H Y. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol[J]. Anal. Chem., 2015,87(16):8138-8143.
doi: 10.1021/acs.analchem.5b00542 URL

[22] Guerrette J P, Percival S J, Zhang B. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity[J]. J. Am. Chem. Soc., 2013,135(2):855-861.
doi: 10.1021/ja310401b URL

[23] Anderson T J, Defnet P A, Zhang B. Electrochemiluminescence (ECL) - based electrochemical imaging using a massive array of bipolar ultramicroelectrodes[J]. Anal. Chem., 2020,92(9):6748-6755.
doi: 10.1021/acs.analchem.0c00921 URL

[24] Iwama T, Inoue K Y, Abe H, Matsue T. Chemical imaging using a closed bipolar electrode array[J]. Chem. Lett., 2018,47(7):843-845.
doi: 10.1246/cl.180303 URL

[25] Iwama T, Inoue K Y, Abe H, Matsue T, Shiku H. Bioimaging using bipolar electrochemical microscopy with improved spatial resolution[J]. Analyst, 2020,145(21):6895-6900.
doi: 10.1039/D0AN00912A URL

[26] Qin X, Li Z Q, Zhou Y, Pan J B, Li J, Wang K, Xu J J, Xia X H. Fabrication of high-density and superuniform gold nanoelectrode arrays for electrochemical fluorescence imaging[J]. Anal. Chem., 2020,92(19):13493-13499.
doi: 10.1021/acs.analchem.0c02918 URL

[27] Hurst S J, Payne E K, Qin L, Mirkin C A. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods[J]. Angew. Chem. Int. Ed., 2006,45(17):2672-2692.
doi: 10.1002/(ISSN)1521-3773 URL

[28] Peinetti A S, Gilardoni R S, Mizrahi M, Requejo F G, Gonzalez G A, Battaglini F. Numerical simulation of the diffusion processes in nanoelectrode arrays using an axial neighbor symmetry approximation[J]. Anal. Chem., 2016,88(11):5752-5759.
doi: 10.1021/acs.analchem.6b00039 URL

[29] Zu Y, Bard A J. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium Tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity[J]. Anal. Chem., 2000,72(14):3223-3232.
doi: 10.1021/ac000199y URL

[30] Pan S, Liu J, Hill C M. Observation of local redox events at individual Au nanoparticles using electrogenerated chemiluminescence microscopy[J]. J. Phys. Chem. C, 2015,119(48):27095-27103.
doi: 10.1021/acs.jpcc.5b06829 URL

[31] Wilson A J, Marchuk K, Willets K A. Imaging electrogenerated chemiluminescence at single gold nanowire electrodes[J]. Nano. Lett., 2015,15(9):6110-6115.
doi: 10.1021/acs.nanolett.5b02383 URL

[32] Valenti G, Fiorani A, Li H, Sojic N, Paolucci F. Essential role of electrode materials in electrochemiluminescence applications[J]. ChemElectroChem, 2016,3(12):1990-1997.
doi: 10.1002/celc.v3.12 URL

[33] Li F, Zu Y. Effect of nonionic fluorosurfactant on the electrogenerated chemiluminescence of the tris(2,2'-bipy-ridine)ruthenium(II)/Tri-n-propylamine system: lower oxidation potential and higher emission intensity[J]. Anal. Chem., 2004,76(6):1768-1772.
doi: 10.1021/ac035181c URL

[34] Yin H J, Zhao S L, Zhao K, Muqsit A, Tang H J, Chang L, Zhao H J, Gao Y, Tang Z Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity[J]. Nat. Commun., 2015,6:6430.
doi: 10.1038/ncomms7430 URL

[35] Cheng N, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B, Li R, Sham T K, Liu L M, Botton G A, Sun X L. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nat. Commun., 2016,7:13638.
doi: 10.1038/ncomms13638 URL

[36] Liu S F, Zhang X, Yu Y M, Zou G Z. A monochromatic electrochemiluminescence sensing strategy for dopamine with dual-stabilizers-capped CdSe quantum dots as emitters[J]. Anal. Chem., 2014,86(5):2784-2788.
doi: 10.1021/ac500046s URL

[37] Wei H, Wang E K. Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium[J]. TRAC-Trend Anal. Chem., 2008,27(5):447-459.
doi: 10.1016/j.trac.2008.02.009 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.