•  
  •  
 

Corresponding Author

Zhi-Peng Wu(zpwu@tju.edu.cn);
Chuan-Jian Zhong(cjzhong@binghamton.edu)

Abstract

The development of efficient electrocatalysts for applications in fuel cells, including proton-exchange membrane fuel cell (PEMFC) and direct ethanol fuel cell (DEFC), has attracted extensive research attention in recent years. Oxygen reduction reaction and ethanol oxidation reaction are two of the key reactions where the design of active, stable and low-cost electrocatalysts is critical for the mass commercializations of PEMFCs and DEFCs. This challenge stems largely from the limited understanding of the catalyst structures and reaction mechanisms. Progress has been made in investigations of electrocatalysts derived from Pd-based alloy nanomaterials both experimentally and computationally. We highlight herein some of the recent insights into the catalyst structures and reaction mechanisms of Pd and Pd-based electrocatalysts in oxygen reduction reaction and ethanol oxidation reaction. Both experimental and computational aspects will be discussed, along with their implications for the design of optimal electrocatalysts.

Graphical Abstract

Keywords

oxygen reduction reaction, ethanol oxidation reaction, electrocatalyst, phase structure, reaction mechanism, fuel cells

Publication Date

2021-04-28

Online Available Date

2021-03-12

Revised Date

2021-02-21

Received Date

2020-12-31

References

[1] Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M B, Zhang J, Marinkovic N S, Liu P, Frenkel A I, Adzic R R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2[J]. Nat. Mater., 2009,8(4):325-330.
doi: 10.1038/nmat2359 pmid: 19169248

[2] Wu Z P, Miao B, Hopkins E, Park K, Chen Y F, Jiang H X, Zhang M H, Zhong C J, Wang L C. Poisonous species in complete ethanol oxidation reaction on palladium catalysts[J]. J. Phys. Chem. C, 2019,123(34):20853-20868.
doi: 10.1021/acs.jpcc.9b04229 URL

[3] Wu Z P, Zhang M H, Jiang H X, Zhong C J, Chen Y F, Wang L C. Competitive C-C and C-H bond scission in the ethanol oxidation reaction on Cu(100) and the effect of an alkaline environment[J]. Phys. Chem. Chem. Phys., 2017,19(23):15444-15453.
doi: 10.1039/C7CP01445G URL

[4] Wang K L, Wang F, Zhao Y F, Zhang W Q. Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell[J]. J. Energy Chem., 2021,52:251-261.
doi: 10.1016/j.jechem.2020.04.056 URL

[5] Guo J S, Chen R R, Zhu F H, Sun S G, Villullas H M. New understandings of ethanol oxidation reaction mechanism on Pd/C and Pd2Ru/C catalysts in alkaline direct ethanol fuel cells[J]. Appl. Catal. B - Environ., 2018,224:602-611.
doi: 10.1016/j.apcatb.2017.10.037 URL

[6] Shao M H, Chang Q W, Dodelet J P, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem. Rev., 2016,116(6):3594-3657.
doi: 10.1021/acs.chemrev.5b00462 URL

[7] Jiang K Z, Wang P T, Guo S J, Zhang X, Shen X, Lu G, Su D, Huang X Q. Ordered PdCu-based nanoparticles as bifunctional oxygenreduction and ethanol-oxidation electrocatalysts[J]. Angew. Chem. In. Ed., 2016,55(31):9030-9035.
doi: 10.1002/anie.201603022 URL

[8] Wu Z P, Shan S Y, Zang S Q, Zhong C J. Dynamic core-shell and alloy structures of multimetallic nanomaterials and their catalytic synergies[J]. Acc. Chem. Res., 2020,53(12):2913-2924.
doi: 10.1021/acs.accounts.0c00564 URL

[9] Xiao F, Wang Y C, Wu Z P, Chen G Y, Yang F, Zhu S Q, Siddharth K, Kong Z J, Lu A L, Li J C, Zhong C J, Zhou Z Y, Sha M H. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells[J]. Adv. Mater., 2021: 2006292.

[10] Miao B, Wu Z P, Zhang M H, Chen Y F, Wang L C. Role of Ni in bimetallic PdNi catalysts for ethanol oxidation reaction[J]. J. Phys. Chem. C , 2018,122(39):22448-22459.
doi: 10.1021/acs.jpcc.8b05812 URL

[11] Munoz F, Hua C, Kwong T, Tran L, Nguyen T Q, Haan J L. Palladium-copper electrocatalyst for the promotion of the electrochemical oxidation of polyalcohol fuels in the alkaline direct alcohol fuel cell[J]. Appl. Catal. B - Environ., 2015,174:323-328.

[12] Monyoncho E A, Steinmann S N, Michel C, Baranova E A, Woo T K, Sautet P. Ethanol electro-oxidation on palladium revisited using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and density functional theory (DFT): Why is it difficult to break the C-C bond?[J]. ACS Catal., 2016,6(8):4894-4906.
doi: 10.1021/acscatal.6b00289 URL

[13] Tang W, Zhang L, Henkelman G. Catalytic activity of Pd/Cu random alloy nanoparticles for oxygen reduction[J]. J. Phys. Chem. Lett. , 2011,2(11):1328-1331.
doi: 10.1021/jz2004717 URL

[14] Miao B, Wu Z P, Xu H, Zhang M H, Chen Y F, Wang L C. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation[J]. Chem. Phys. Lett. , 2017,688:92-97.
doi: 10.1016/j.cplett.2017.09.045 URL

[15] Wu Z P, Shan S Y, Xie Z H, Kang N, Park K, Hopkins E, Yan S, Sharma A, Luo J, Wang J, Petkov V, Wang L C, Zhong C J. Revealing the role of phase structures of bimetallic nanocatalysts in the oxygen reduction reaction[J]. ACS Catal., 2018,8(12):11302-11313.
doi: 10.1021/acscatal.8b03106 URL

[16] Miao B, Wu Z P, Xu H, Zhang M H, Chen Y F, Wang L C. DFT studies on the key competing reaction steps towards complete ethanol oxidation on transition metal catalysts[J]. Comput. Mater. Sci. , 2019,156:175-186.
doi: 10.1016/j.commatsci.2018.09.029 URL

[17] Sha Y, Yu T H, Merinov B V, Goddard W A. DFT prediction of oxygen reduction reaction on palladium-copper alloy surfaces[J]. ACS Catal., 2014,4(4):1189-1197.
doi: 10.1021/cs4009623 URL

[18] Petkov V, Maswadeh Y, Vargas J A, Shan S Y, Kareem H, Wu Z P, Luo J, Zhong C J, Shastri S, Kenesei P. Deviations from Vegard's law and evolution of the electrocatalytic activity and stability of Pt-based nanoalloys inside fuel cells by in operando X-ray spectroscopy and total scattering[J]. Nanoscale, 2019,11(12):5512-5525.
doi: 10.1039/C9NR01069F URL

[19] Kong Z, Maswadeh Y, Vargas J A, Kong Z J, Maswadeh Y, Vargas J A, Shan S Y, Wu Z P, Kareem H, Leff A C, Tran D T, Chang F F, Yan S, Nam, S, Zhao X F, Lee J M, Luo J, Shastri S, Yu G, Petkov V, Zhong C J. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions[J]. J. Am. Chem. Soc., 2020,142(3):1287-1299.
doi: 10.1021/jacs.9b10239 URL

[20] Wu Z P, Lu X F, Zang S Q, Lou X W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction[J]. Adv. Funct. Mater., 2020,30(15):1910274.
doi: 10.1002/adfm.v30.15 URL

[21] Wu Z P, Caracciolo D T, Maswadeh Y, Wen J G, Kong Z J, Shan S Y, Vargas J A, Yan S, Hopkins E, Park K, Sharma A, Ren Y, Petkov V, Wang L C, Zhong C J. Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts[J]. Nat. Commun., 2021,12(1):859.
doi: 10.1038/s41467-021-21017-6 URL

[22] Wu J F, Shan S Y, Luo J, Joseph P, Petkoy V, Zhong C J. PdCu nanoalloy electrocatalysts in oxygen reduction reaction: role of composition and phase state in catalytic synergy[J]. ACS Appl. Mater. Interfaces, 2015,7(46):25906-25913.
doi: 10.1021/acsami.5b08478 URL

[23] Zhang W, Shan S Y, Luo J, Fisher A, Chen J F, Zhong C J, Zhu J Q, Cheng D J. Origin of enhanced activities for CO oxidation and O2 reaction over composition-optimized Pd50Cu50 nanoalloy catalysts[J]. J. Phys. Chem. C, 2017,121(20):11010-11020.
doi: 10.1021/acs.jpcc.6b10814 URL

[24] Wu J F, Shan S Y, Petkov V, Prasai B, Cronk H, Joseph P, Luo J, Zhong C J. Composition-structure-activity relationships for palladiumalloyed nanocatalysts in oxygen reduction reaction: An ex-situ/in-situ high energy X-ray diffraction study[J]. ACS Catal., 2015,5(9):5317-5327.
doi: 10.1021/acscatal.5b01608 URL

[25] Maswadeh Y, Shan S Y, Prasai B, Zhao Y G, Xie Z H, Wu Z P, Luo J, Ren Y, Zhong C J, Petkov V. Charting the relationship between phase type-surface area-interactions between the constituent atoms and oxygen reduction activity of Pd-Cu nanocatalysts inside fuel cells by in operando high-energy X-ray diffraction[J]. J. Mater. Chem. A, 2017,5(16):7355-7365.
doi: 10.1039/C7TA00688H URL

[26] Wang C, Chen D P, Sang X, Unocic R R, Skrabalak S E. Size-dependent disorder-order transformation in the synjournal of monodisperse intermetallic PdCu nanocatalysts[J]. ACS Nano, 2016,10(6):6345-6353.
doi: 10.1021/acsnano.6b02669 URL

[27] Wanjala B N, Fang B, Loukrakpam R, Chen Y S, Engelhard M, Luo J, Yin J, Yang L F, Shan S Y, Zhong C J. Role of metal coordination structures in enhancement of electrocatalytic activity of ternary nanoalloys for oxygen reduction reaction[J]. ACS Catal., 2012,2(5):795-806.
doi: 10.1021/cs300080k URL

[28] Petkov V, Maswadeh Y, Zhao Y G, Lu A L, Cronk H, Chang F F, Shan S Y, Kareem H, Luo J, Zhong C J, Shastri S, Kenesei P. Nanoalloy catalysts inside fuel cells: An atomic-level perspective on the functionality by combined in operando X-ray spectroscopy and total scattering[J]. Nano Energy, 2018,49:209-220.
doi: 10.1016/j.nanoen.2018.04.049 URL

[29] Petkov V, Shastri S, Kim J W, Shan S Y, Luo J, Wu J F, Zhong C J. Application of differential resonant high-energy X-ray diffraction to three-dimensional structure studies of nanosized materials: A case study of Pt-Pd nanoalloy catalysts[J]. Acta Crystallogr. Sect. A, 2018,74(5):553-566.
doi: 10.1107/S2053273318009282 URL

[30] Wu J F, Shan S Y, Cronk H, Chang F F, Kareern H, Zhao Y G, Luo J, Petkov V, Zhong C J. Understanding composition-dependent synergy of PtPd alloy nanoparticles in electrocatalytic oxygen reduction reaction[J]. J. Phys. Chem. C, 2017,121(26):14128-14136.
doi: 10.1021/acs.jpcc.7b03043 URL

[31] Zhou Z Y, Wang Q, Lin J L, Tian N, Sun S G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media[J]. Electrochim. Acta, 2010,55(27):7995-7999.
doi: 10.1016/j.electacta.2010.02.071 URL

[32] Yang Y Y, Ren J, Li Q X, Zhou Z Y, Sun S G, Cai W B. Electrocatalysis of ethanol on a Pd electrode in alkaline media: An in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study[J]. ACS Catal., 2014,4(3):798-803.
doi: 10.1021/cs401198t URL

[33] Chen H M, Xing Z L, Zhu S Q, Zhang L L, Chang Q W, Huang J L, Cai W B, Kang N, Zhong C J, Shao M H. Palladium modified gold nanoparticles as electrocatalysts for ethanol electrooxidation[J]. J. Power Sources, 2016,321:264-269.
doi: 10.1016/j.jpowsour.2016.04.072 URL

[34] Liang Z X, Zhao T S, Xu J B, Zhu L D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media[J]. Electrochim. Acta, 2009,54(8):2203-2208.
doi: 10.1016/j.electacta.2008.10.034 URL

[35] Wang H F, Liu Z P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network[J]. J. Am. Chem. Soc., 2008,130(33):10996-11004.
doi: 10.1021/ja801648h URL

[36] Wang E D, Xu J B, Zhao T S. Density functional theory studies of the structure sensitivity of ethanol oxidation on palladium surfaces[J]. J. Phys. Chem. C, 2010,114(23):10489-10497.
doi: 10.1021/jp101244t URL

[37] Yin J, Shan S Y, Ng M S, Yang L F, Mott D, Fang W Q, Kang N, Luo J, Zhong C J. Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts[J]. Langmuir, 2013,29(29):9249-9258.
doi: 10.1021/la401839m URL

[38] Liao Y, Yu G, Zhang Y, Guo T T, Chang F F, Zhong C J. Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction[J]. J. Phys. Chem. C, 2016,120(19):10476-10484.
doi: 10.1021/acs.jpcc.6b02630 URL

[39] Lu A L, Wu Z P, Chen B H, Peng D L, Yan S, Shan S Y, Skeete Z, Chang F F, Chen Y Z, Zheng H F, Zeng D Q, Yang L F, Sharma A J, Luo J, Wang L C, Petkov V, Zhong C J. From a Au-rich core/PtNi-rich shell to a Ni-rich core/PtAu-rich shell: an effective thermochemical pathway to nanoengineering catalysts for fuel cells[J]. J. Mater. Chem. A, 2018,6(12):5143-5155.
doi: 10.1039/C8TA00025E URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.