Abstract
2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (Spiro-OMeTAD) is the most widely used hole transport material in perovskite solar cells (PSCs). However, its oxidation in the air takes a long time and results in the attack of perovskite by water. In this regard, we performed the oxidation process of Spiro-OMeTAD in oxygen, where perovskite can be protected from water, guaranteeing the integrity of perovskite. It was demonstrated that the champion Spiro-OMeTAD based CsPbIBr2 PSCs after oxygen oxidation achieved a 7.19% power conversion efficiency (PCE), showing a higher PCE than 6.29% of the champion device oxidized in air. A series of electrochemical characterization methods were applied to investigate the performances of the different cell devices under different oxidation conditions. It was revealed that the oxygen oxidation enabled to enhance the hole conductivity of Spiro-OMeTAD, reduce the charge recombination and improve the charge transfer efficiency in PSCs. Moreover, the device with oxygen oxidation had a higher average efficiency and greater stability. This method makes the devices have better repeatability, which provides a reliable idea for the commercial development of PSCs.
Graphical Abstract
Keywords
perovskite, Spiro-OMeTAD, rapid oxidation, CsPbIBr2
Publication Date
2021-04-28
Online Available Date
2021-03-20
Revised Date
2021-03-17
Received Date
2021-02-04
Recommended Citation
Wei-Guo Wang, Tian Bai, Gao-Fei Xue, Mei-Dan Ye.
Oxygen-Exposure Induced Rapid Oxidation of Spiro-OMeTAD in CsPbIBr2 Perovskite Solar Cells[J]. Journal of Electrochemistry,
2021
,
27(2): 216-226.
DOI: 10.13208/j.electrochem.201249
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol27/iss2/3
References
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131(17):6050-6051.
doi: 10.1021/ja809598r URL
[2] Sahli F, Werner J, Kamino BA, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nat. Mater., 2018,17(9):820-826.
doi: 10.1038/s41563-018-0115-4 URL
[3] Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchun-angatchaval T, Wheeler S, Durrant J R, Haque S A. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells[J]. Energy. Environ. Sci., 2016,9(5):1655-1660.
doi: 10.1039/C6EE00409A URL
[4] Pearson A J, Eperon G E, Hopkinson P E, Habisreutinger S N, Wang J T W, Snaith H J, Greenham N C. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells: kinetics and mechanisms[J]. Adv. Energy Mater., 2016,6(13):1600014.
doi: 10.1002/aenm.v6.13 URL
[5] Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J. Organometal halide perovskite solar cells: degradation and stability[J]. Energy Environ. Sci., 2016,9(2):323-356.
doi: 10.1039/C5EE02733K URL
[6] Huang J, Tan S, Lund P D, Zhou H. Impact of H2O on organic-inorganic hybrid perovskite solar cells[J]. Energy Environ. Sci., 2017,10(11):2284-2311.
doi: 10.1039/C7EE01674C URL
[7] Dong Q, Liu F, Wong M K, Tam H W, Djurišic A B, Ng A, Surya C, Chan W K, Ng AMC. Encapsulation of perovskite solar cells for high humidity conditions[J]. ChemSusChem, 2016,9(18):2597-2603.
doi: 10.1002/cssc.201600868 pmid: 27504719
[8] Weerasinghe H C, Dkhissi Y, Scully A D, Caruso R A, Cheng Y B. Encapsulation for improving the lifetime of flexible perovskite solar cells[J]. Nano Energy, 2015,18:118-125.
doi: 10.1016/j.nanoen.2015.10.006 URL
[9] Matteocci F, Cinà L, Lamanna E, Cacovich S, Divitini G, Midgley P A, Ducati C, Di Carlo A. Encapsulation for long-term stability enhancement of perovskite solar cells[J]. Nano Energy, 2016,30:162-172.
doi: 10.1016/j.nanoen.2016.09.041 URL
[10] Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y. Stability of all-inorganic perovskite solar cells[J]. Nano Energy, 2020,67:104249.
doi: 10.1016/j.nanoen.2019.104249 URL
[11] Li B, Fu L, Li S, Li H, Pan L, Wang L, Chang B H, Yin L W. Pathways toward high-performance inorganic perovskite solar cells: challenges and strategies[J]. J. Mater. Chem. A, 2019,7(36):20494-20518.
doi: 10.1039/C9TA04114A URL
[12] Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z R, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lü H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J. All-inorganic perovskite solar cells[J]. J. Am. Chem. Soc., 2016,138(49):15829-15832.
doi: 10.1021/jacs.6b10227 URL
[13] Liang J, Zhao P Y, Wang C X, Wang Y R, Hu Y, Zhu G Y, Ma L B, Liu J, Jin Z. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and dtability[J]. J. Am. Chem. Soc., 2017,139(40):14009-14012.
doi: 10.1021/jacs.7b07949 URL
[14] Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies > 18%[J]. Science, 2019,365(6453):591-595.
doi: 10.1126/science.aav8680 URL
[15] Chu W B, Saidi W A, Zhao J, Prezhdo O V. Soft lattice and defect covalency rationalize tolerance of β-CsPbI3 perovskite solar cells to native defects[J]. Angew. Chem. Int. Ed., 2020,59(16):6435-6441.
doi: 10.1002/anie.v59.16 URL
[16] You Y B, Tian W, Wang M, Coo F R, Sun H X, Li L. PEG modified CsPbIBr2 perovskite film for efficient and stable solar cells[J]. Adv. Mater. Interfaces, 2020,7(13):2000537.
doi: 10.1002/admi.v7.13 URL
[17] Chen W J, Chen H Y, Xu G Y, Xue R M, Wang S H, Li Y W, Li Y F. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells[J]. Joule, 2019,3(1):191-204.
doi: 10.1016/j.joule.2018.10.011 URL
[18] Gao B W, Meng J. Highly stable all-inorganic CsPbIBr2 perovskite solar cells with 11.30% efficiency using crystal interface passivation[J]. ACS Appl. Energy Mater. 2020,3(9):8249-8256.
doi: 10.1021/acsaem.0c00678 URL
[19] Liang J, Zhu G Y, Wang C X, Zhao P Y, Wang Y R, Hu Y, Ma L B, Tie Z X, Liu J, Jin Z. An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging[J]. Nano Energy, 2018,52:239-245.
doi: 10.1016/j.nanoen.2018.07.060 URL
[20] Ma L B, Zhang W J, Zhao P Y, Liang J, Hu Y, Zhu G Y, Chen R P, Tie Z X, Liu J, Jin Z. Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays[J]. J. Mater. Chem. A, 2018,6(41):20076-20082.
doi: 10.1039/C8TA08116F URL
[21] Liang J, Liu J, Jin Z. All-inorganic halide perovskites for optoelectronics: progress and prospects[J]. Sol. RRL, 2017,1(10):1700086.
doi: 10.1002/solr.201700086 URL
[22] Liang J, Wang C X, Zhao P Y, Lu Z P, Ma Y, Xu Z R, Wang Y R, Zhu H F, Hu Y, Zhu G Y, Ma L B, Chen T, Tie Z X, Liu J, Jin Z. Solution synjournal and phase control of inorganic perovskites for high-performance optoelectronic devices[J]. Nanoscale, 2017,9(33):11841-11845.
doi: 10.1039/c7nr03530f pmid: 28792059
[23] Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nckel oxide hole-transporting layer[J]. Adv. Mater., 2015,27(4):695-701.
doi: 10.1002/adma.201404189 URL
[24] Ameen S, Rub M A, Kosa S A, Alamry K A, Akhtar M S, Shin H S, Seo H K, Asiri A M, Nazeeruddin M K. Perovskite solar cells: influence of hole transporting materials on power conversion eefficiency[J]. ChemSusChem, 2016,9(1):10-27.
doi: 10.1002/cssc.201501228 URL
[25] Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J, Seok S I. o-Methoxy substituents in Spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells[J]. J. Am. Chem. Soc., 2014,136(22):7837-7840.
doi: 10.1021/ja502824c URL
[26] Dualeh A, Moehl T, Nazeeruddin M K, Grätzel M. Temperature dependence of transport properties of Spiro-MeOTAD as a hole transport material in solid-state dye-sensitized solar cells[J]. ACS Nano, 2013,7(3):2292-2301.
doi: 10.1021/nn4005473 URL
[27] Schölin R, Karlsson M H, Eriksson S K, Siegbahn H, Johansson E M J, Rensmo H. Energy level shifts in spiro-OMeTAD molecular thin films when adding Li-TFSI[J]. J. Phys. Chem. C, 2012,116(50):26300-26305.
doi: 10.1021/jp306433g URL
[28] Wang Y M, Qu H, Zhang C M, Chen Q. Rapid oxidation of the hole transport layer in perovskite solar cells by a low-temperature plasma[J]. Sci. Rep., 2019,9(1):459.
doi: 10.1038/s41598-018-36685-6 URL
[29] Nouri E, Wang Y L, Chen Q, Xu J J, Dracopoulos V, Sygellou L, Xu Z X, Mohammadi M R, Lianos P. The beneficial effects of mixing spiro-OMeTAD with n-butyl-substituted copper phthalocyanine for perovskite solar cells[J]. Electrochim. Acta, 2016,222:1417-1423.
doi: 10.1016/j.electacta.2016.11.119 URL
[30] Nguyen W H, Bailie C D, Unger E L, McGehee M D. Enhancing the hole-conductivity of Spiro-OMeTAD without oxygen or lithium salts by using Spiro(TFSI)2 in perovskite and dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2014,136(31):10996-11001.
doi: 10.1021/ja504539w URL
[31] Liu G L, Xi X, Chen R L, Chen L P, Chen G Q. Oxygen aging time: A dominant step for spiro-OMeTAD in perovskite solar cells[J]. J. Renew. Sustain. Ener., 2018,10(4):043702.
doi: 10.1063/1.5031167 URL
[32] Wang H X, Cao S L, Yang B, Li H Y, Wang M, Hu X F, Sun K, Zang Z G. NH4Cl - modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process[J]. Sol. RRL, 2019,4(1):1900363.
doi: 10.1002/solr.v4.1 URL
[33] Guo Y X, Yin X T, Liu J, Que W X. Highly efficient CsPbIBr2 perovskite solar cells with efficiency over 9.8% fabricated using a preheating-assisted spin-coating method[J]. J. Mater. Chem. A, 2019,7(32):19008-19016.
doi: 10.1039/C9TA03336J URL
[34] Lu J J, Chen S C, Zheng Q D. Defect passivation of CsPbIBr2 perovskites for high-performance solar cells with large open-circuit voltage of 1.28 V[J]. ACS Appl. Energy Mater., 2018,1(11):5872-5878.
doi: 10.1021/acsaem.8b01430 URL
[35] Zhu W D, Zhang Z Y, Chai W M, Chen D Z, Xi H, Chang J J, Zhang J C, Zhang C F, Hao Y. Benign pinholes in CsPbIBr2 absorber film enable efficient carbon-based, all-inorganic perovskite solar cells[J]. ACS Appl. Energy Mater., 2019,2(7):5254-5262.
doi: 10.1021/acsaem.9b00944 URL
[36] Liu P Y, Yang X Q, Chen Y H, Xiang H M, Wang W, Ran R, Zhou W, Shao Z P. Promoting the efficiency and stability of CsPbIBr2-based all-inorganic perovskite solar cells through a functional Cu2+ doping strategy[J]. ACS Appl. Mater. Interfaces, 2020,12(21):23984-23994.
doi: 10.1021/acsami.0c04938 URL
[37] Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells[J]. Nat. Commun., 2017,8(1):15218.
doi: 10.1038/ncomms15218 URL
[38] Zhou Y Y, Zhao Y X. Chemical stability and instability of inorganic halide perovskites[J]. Energy Environ. Sci., 2019,12(5):1495-1511.
doi: 10.1039/C8EE03559H URL
[39] Liu S C, Li Z, Yang Y, Wang X, Chen Y X, Xue D J, Hu J S. Investigation of oxygen passivation for high-performance all-inorganic perovskite solar cells[J]. J. Am. Chem. Soc., 2019,141(45):18075-18082.
doi: 10.1021/jacs.9b07182 URL
[40] Tian Y X, Peter M, Unger E, Abdellah M, Zheng K, Pullerits T, Yartsev A, Sundström V, Scheblykin I G. Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold[J]. Phys. Chem. Chem. Phys., 2015,17(38):24978-24987.
doi: 10.1039/C5CP04410C URL
[41] Brenes R, Guo D, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D. Metal halide perovskite polycrystalline films exhibiting properties of single crystals[J]. Joule, 2017,1(1):155-167.
doi: 10.1016/j.joule.2017.08.006 URL
[42] Zarazua I, Bisquert J, Garcia-Belmonte G. Light-induced space-charge accumulation zone as photovoltaic mechanism in perovskite solar cells[J]. J. Phys. Chem. Lett., 2016,7(3):525-528.
doi: 10.1021/acs.jpclett.5b02810 pmid: 26783719
[43] Almora O, Zarazua I, Mas-Marza E, Mora-Sero I, Bisquert J, Garcia-Belmonte G. Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells[J]. J. Phys. Chem. Lett., 2015,6(9):1645-1652.
doi: 10.1021/acs.jpclett.5b00480 pmid: 26263328
[44] Correa-Baena J P, Turren-Cruz S H, Tress W, Hagfeldt A, Aranda C, Shooshtari L, Bisquert J, Guerrero A. Changes from bulk to surface recombination mechanisms between pristine and cycled perovskite solar cells[J]. ACS Energy Lett., 2017,2(3):681-688.
doi: 10.1021/acsenergylett.7b00059 URL
[45] Subhani W S, Wang K, Du M Y, Wang X L, Liu S Z. Interface-modification-induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells[J]. Adv. Energy Mater., 2019,9(21):1703785.
[46] Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C, Nazeeruddin M K, Grätzel M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2011,133(45):18042-18045.
doi: 10.1021/ja207367t URL
[47] Guillén E, Ramos F J, Anta J A, Ahmad S. Elucidating transport-recombination mechanisms in perovskite solar cells by small-perturbation techniques[J]. J. Phys. Chem. Lett., 2014,118(40):22913-22922.
[48] Yadav P, Alotaibi M H, Arora N, Dar M I, Zakeeruddin S M, Grätzel M. Influence of the nature of a cation on dynamics of charge transfer processes in perovskite solar cells[J]. Adv. Funct. Mater., 2018,28(8):1706073.
doi: 10.1002/adfm.v28.8 URL
[49] Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I, Snaith H J. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells[J]. Phys. Chem. Chem. Phys., 2013,15(7):2572-2579.
doi: 10.1039/c2cp44397j URL
[50] Correa-Baena J P, Abate A, Saliba M, Tress W, Jesper Jacobsson T, Grätzel M, Hagfeldt A. The rapid evolution of highly efficient perovskite solar cells[J]. Energy Environ. Sci., 2017,10(3):710-727.
doi: 10.1039/C6EE03397K URL
[51] Correa-Baena J P, Anaya M, Lozano G, Tress W, Domanski K, Saliba M, Matsui T, Jacobsson T J, Calvo M E, Abate A, Grätzel M, Míguez H, Hagfeldt A. Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement[J]. Adv. Mater., 2016,28(25):5031-5037.
doi: 10.1002/adma.201600624 URL
[52] Pérez-del-Rey D, Forgács D, Hutter E M, Savenije T J, Nordlund D, Schulz P, Berry J J, Sessolo M, Bolink H J. Strontium insertion in methylammonium lead iodide: long charge carrier lifetime and high fill-factor solar cells[J]. Adv. Mater., 2016,28(44):9839-9845.
doi: 10.1002/adma.201603016
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons