•  
  •  
 

Authors

Hailemariam Barkae Tesfaye, 1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin,China;2. School of Applied chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China;3. Wolkite university, College of Natural & Computational Science, Department of Chemistry, P.O Box 07, Wolkite, Ethiopia;
Ibrahim Halawa Mohamed, 1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin,China;4. Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt;5. College of Chemistry and Environmental Engineering and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China;
Haile Fereja Tadesse, 1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin,China;6. Ambo University, College of Medicine and Health Sciences, Department of Pharmacy, P. O. Box 19, Ambo, Ethiopia;
Addisu Kitte Shimeles, 1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin,China;7. Jimma University, College of Natural Sciences, Department of Chemistry, P. O. Box 378, Jimma, Ethiopia;
Ma Xian-Gui, 1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin,China;2. School of Applied chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China;
Chen Ye-Quan, 1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin,China;
Xu Guo-Bao, 1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin,China;Follow

Corresponding Author

Xu Guo-Bao(guobaoxu@ciac.ac.cn)

Abstract

Herein, sulfamic acid (SA) was utilized, for the first time, to enhance significantly the luminol electrochemiluminescence (ECL). With the SA concentration increased from 0.1 μmol·L-1 to 500 μmol·L-1 the ECL intensity increased proportionally. The developed luminol/SA ECL system was employed to detect dopamine (DA) based on its prominent quenching effect. The Stern-Volmer equation of Io/I= 1+Ksv[DA] could be applied to express well the quenching mechanism of DA in the luminol/SA ECL system. The calibration plot showed that the increase in the DA concentration from 0.5 to 20 μmol·L-1 decreased linearly the ECL intensity with a detection limit of 30 nmol·L-1. The luminol/SA ECL system was successfully carried out for DA detection in urine real sample by employing the standard addition method with the excellent recoveries of 103% ~ 105%. Selectivity of the as-developed ECL system was also investigated by using uric acid, ascorbic acid, sugars and amino acids. The results indicated that the ECL intensities changed negligibly in the presence of other substances.

Graphical Abstract

Keywords

electrochemiluminescence, sulfamic acid, luminol, dopamine

Publication Date

2021-04-28

Online Available Date

2021-03-15

Revised Date

2021-03-08

Received Date

2021-02-02

References

[1] Hanif S, Han S, John P, Gao W Y, Kitte S A, Xu G B. Electrochemiluminescence of luminol-tripropylamine system[J]. Electrochim. Acta, 2016,196:245-251.
doi: 10.1016/j.electacta.2016.02.175 URL

[2] Liu Z Y, Qi W J, Xu G B. Recent advances in electrochemiluminescence[J]. Chem. Soc. Rev., 2015,44(10):3117-3142.
doi: 10.1039/C5CS00086F URL

[3] Richter M M. Electrochemiluminescence (ECL)[J]. Chem. Rev., 2004,104(6):3003-3036.
pmid: 15186186

[4] Sakura S. Electrochemiluminescence of hydrogen peroxide-luminol at a carbon electrode[J]. Anal. Chim. Acta, 1992,262(1):49-57.
doi: 10.1016/0003-2670(92)80007-T URL

[5] Hanif S, Han S, John P, Gao W Y, Kitte S A, Xu G B. Electrochemiluminescence of luminol-tripropylamine system[J]. Electrochim. Acta, 2016,196:245-251.
doi: 10.1016/j.electacta.2016.02.175 URL

[6] Cao Y L, Yuan R, Chai Y Q, Mao L, Niu H, Liu H J, Zhuo Y. Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labeling[J]. Biosens. Bioelectron., 2012,31(1):305-309.
doi: 10.1016/j.bios.2011.10.036 URL

[7] S Shkir M, Riscob B, Ganesh V, et al. Crystal growth, structural, crystalline perfection, optical and mechanical properties of Nd3+ doped sulfamic acid (SA) single crystals [J]. Cryst. Growth, 2013,380:228-235.
doi: 10.1016/j.jcrysgro.2013.06.022 URL

[8] Freeling F, Scheurer M, Sandholzer A, Armbruster D, Nodler K, Schulz M, Ternes T A, Wick A. Under the radar - Exceptionally high environmental concentrations of the high production volume chemical sulfamic acid in the urban water cycle[J]. Water Res., 2020,175:115706.
doi: 10.1016/j.watres.2020.115706 URL

[9] Upadhyay N, Pujar M G, George R P, Philip J. Development of a sulfamic acid-based chemical formulation for effective cleaning of modified 9Cr-1Mo steel steam generator tubes[J]. Trans. Indian Inst. Met., 2020,73(2):343-352.
doi: 10.1007/s12666-019-01852-4 URL

[10] Winum J Y, Scozzafava A, Montero J L, Supuran C T. Sulfamates and their therapeutic potential[J]. Med. Res. Rev., 2005,25(2):186-228.
doi: 10.1002/(ISSN)1098-1128 URL

[11] B. Khalili, M. Rimaz, Tondro T. DFT study of N-substituted sulfamic acid derivatives acidity in aqueous media and gas phase[J]. Sci. Iran., 2014,21:2021-2028.

[12] Lin K N, Xu J, Dong X, Huo Y L, Yuan D X, Lin H, Zhang Y B. An automated spectrophotometric method for the direct determination of nitrite and nitrate in seawater: Nitrite removal with sulfamic acid before nitrate reduction using the vanadium reduction method[J]. Microchem. J., 2020,158:105272.
doi: 10.1016/j.microc.2020.105272 URL

[13] Kim D S, Kang E S, Baek S, Choo S S, Chung Y H, Lee D, Min J, Kim T H. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays[J]. Sci. Rep., 2018,8(1):14049.
doi: 10.1038/s41598-018-32477-0 URL

[14] Egaña L A, Cuevas R A, Baust T B, Parra L A, Leak R K, Hochendoner S, Peña K, Quiroz M, Hong W C, Dorostkar M M, Janz R, Sitte H H, Torres G E. Physical and functional interaction between the dopamine transporter and the synaptic vesicle protein synaptogyrin-3[J]. J. Neurosci. Res., 2009,29(14):4592-4604.

[15] Stanwood G D. Chapter 9 - Dopamine and Stress[M] //Fink G (editor), Stress: Physiology, Biochemistry, and Pathology, Academic Press, 2019: 105-114.

[16] Khudaish E A, Al-Ajmi K Y, Al-Harthi S H, Al-Hinai A T. A solid state sensor based polytyramine film modified electrode for the determination of dopamine and ascorbic acid in a moderately acidic solution[J]. J. Electroanal. Chem., 2012,676:27-34.
doi: 10.1016/j.jelechem.2012.04.018 URL

[17] Colín-Orozco E, Ramírez-Silva M T, Corona-Avendaéo S, Romero-Romo M, Palomar-Pardavé M. Electrochemical quantification of dopamine in the presence of ascorbic acid and uric acid using a simple carbon paste electrode modified with SDS micelles at pH 7[J]. Electrochim. Acta, 2012,85:307-313.
doi: 10.1016/j.electacta.2012.08.081 URL

[18] Tang L J, Li S, Han F, Liu L Q, Xu L G, Ma W, Kuang H, Li A K, Wang L B, Xu C L. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection[J]. Biosens. Bioelectron., 2015,71:7-12.
doi: 10.1016/j.bios.2015.04.013 URL

[19] Wei X, Zhang Z D, Wang Z H. A simple dopamine detection method based on fluorescence analysis and dopamine polymerization[J]. Microchem. J., 2019,145:55-58.
doi: 10.1016/j.microc.2018.10.004 URL

[20] Ankireddy S R, Kim J. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots[J]. Int. J. Nanomedicine, 2015,10:113-119.

[21] Huang H, Bai J, Li J, Lei L L, Zhang W J, Yan S J, Li Y X. Fluorescence detection of dopamine based on the polyphenol oxidase-mimicking enzyme[J]. Anal. Bioanal. Chem., 2020,412(22):5291-5297.
doi: 10.1007/s00216-020-02742-1 pmid: 32564120

[22] Wu B N, Miao C C, Yu L L, Wang Z Y, Huang C S, Jia N Q. Sensitive electrochemiluminescence sensor based on ordered mesoporous carbon composite film for dopamine[J]. Sens. Actuators B Chem., 2014,195:22-27.
doi: 10.1016/j.snb.2014.01.012 URL

[23] Stewart A J, Hendry J, Dennany L. Whole blood electrochemiluminescent detection of dopamine[J]. Anal. Chem., 2015,87(23):11847-11853.
doi: 10.1021/acs.analchem.5b03345 URL

[24] Peng H P, Deng H H, Jian M L, Liu A L, Bai F Q, Lin X H, Chen W. Electrochemiluminescence sensor based on methionine-modified gold nanoclusters for highly sensitive determination of dopamine released by cells[J]. Microchim. Acta, 2017,184(3):735-743.
doi: 10.1007/s00604-016-2058-2 URL

[25] Kim Y R, Bong S, Kang Y J, Yang Y, Mahajan R K, Kim J S, Kim H. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes[J]. Biosens. Bioelectron., 2010,25(10):2366-2369.
doi: 10.1016/j.bios.2010.02.031 URL

[26] Ma X Y, Chao M Y, Wang Z X. Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode[J]. Anal. Methods, 2012,4(6):1687-1692.
doi: 10.1039/c2ay25040c URL

[27] Li Z, Zhang H M, Zha Q B, Zhai C Y, Li W B, Zeng L X, Zhu M S. Photo-electrochemical detection of dopamine in human urine and calf serum based on MIL-101 (Cr)/carbon black[J]. Microchim. Acta, 2020,187(9):526.
doi: 10.1007/s00604-020-04524-z URL

[28] Venton B J, Cao Q. Fundamentals of fast-scan cyclic vol-tammetry for dopamine detection[J]. Analyst, 2020,145(4):1158-1168.
doi: 10.1039/C9AN01586H URL

[29] Zhao H X, Mu H, Bai Y H, Yu H, Hu Y M. A rapid method for the determination of dopamine in porcine muscle by pre-column derivatization and HPLC with fluorescence detection[J]. J. Pharm. Anal., 2011,1(3):208-212.
doi: 10.1016/j.jpha.2011.04.003 URL

[30] Rao P S, Rujikarn N, Luber J M, Tyras D H. A specific sensitive HPLC method for determination of plasma dopamine[J]. Chromatographia, 1989,28(5):307-310.
doi: 10.1007/BF02260781 URL

[31] Wen D, Liu W, Herrmann A K, Haubold D, Holzschuh M, Simon F, Eychmüller A. Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles[J]. Small, 2016,12(18):2439-2442.
doi: 10.1002/smll.201503874 URL

[32] Kong B, Zhu A W, Luo Y P, Tian Y, Yu Y Y, Shi G Y. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition[J]. Angew. Chem. Int. Ed., 2011,50(8):1837-1840.
doi: 10.1002/anie.v50.8 URL

[33] Kaya M, Volkan M. New approach for the surface enhanced resonance raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid[J]. Anal. Chem., 2012,84(18):7729-7735.
doi: 10.1021/ac3010428 URL

[34] Figueiredo M L B, Martin C S, Furini L N, Rubira R J G, Batagin-Neto A, Alessio P, Constantino C J L. Surface-enhanced Raman scattering for dopamine in Ag colloid: Adsorption mechanism and detection in the presence of interfering species[J]. Appl. Surf. Sci., 2020,522:146466.
doi: 10.1016/j.apsusc.2020.146466 URL

[35] Kitte S A, Wang C, Li S P, Zholudov Y, Qi L M, Li J P, Xu G B. Electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant[J]. Anal. Bioanal. Chem., 2016,408(25):7059-7065.
doi: 10.1007/s00216-016-9409-z URL

[36] Hui P, Zhang L, Gao W Y, Zuo H J, Qi L M, Kitte S A, Li Y H, Xu G B. Detection of sodium dehydroacetate by Tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence[J]. ChemElectroChem., 2017,4(7):1702-1707.
doi: 10.1002/celc.v4.7 URL

[37] Fereja T H, Wang C, Liu F S, Guan Y R, Xu G B. A high-efficiency cathodic sodium nitroprusside/luminol/H2O2 electrochemiluminescence system in neutral media for the detection of sodium nitroprusside, glucose, and glucose oxidase[J]. Analyst, 2020,145(20):6649-6655.
doi: 10.1039/D0AN01178A URL

[38] Bancirova M. Sodium azide as a specific quencher of singlet oxygen during chemiluminescent detection by luminol and Cypridina luciferin analogues[J]. Luminescence, 2011,26(6):685-688.
doi: 10.1002/bio.1296 pmid: 21491580

[39] Gao W Y, Wang C, Muzyka K, Kitte S A, Li J P, Zhang W, Xu G B. Artemisinin-luminol chemiluminescence for forensic bloodstain detection using a smart phone as a detector[J]. Anal. Chem., 2017,89(11):6160-6165.
doi: 10.1021/acs.analchem.7b01000 URL

[40] Fereja T H, Kitte S A, Gao W Y, Yuan F, Snizhko D, Qi L M, Nsabimana A, Liu Z Y, Xu G B. Artesunate-luminol chemiluminescence system for the detection of hemin[J]. Talanta, 2019,204:379-385.
doi: 10.1016/j.talanta.2019.06.007 URL

[41] Buettner G R, Ng C F, Wang M, Rodgers V G J, Schafer F Q. A new paradigm: Manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state[J]. Free Radical Biol. Med., 2006,41(8):1338-1350.
doi: 10.1016/j.freeradbiomed.2006.07.015 URL

[42] Khaket T P, Ahmad R. Biochemical studies on hemoglobin modified with reactive oxygen species (ROS)[J]. Appl. Biochem. Biotechnol., 2011,164(8):1422-1430.
doi: 10.1007/s12010-011-9222-2 URL

[43] Rowley D, Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease[J]. Clin. Sci., 1983,64(6):649-653.
pmid: 6301745

[44] Whitman C L. Titrimetric determination of sulfamic acid[J]. Anal. Methods, 1957,29(11):1684-1685.

[45] Wahba M E K, El-Enany N, Belal F. Application of the Stern-Volmer equation for studying the spectrofluorimetric quenching reaction of eosin with clindamycin hydrochloride in its pure form and pharmaceutical preparations[J]. Anal. Methods, 2015,7(4):10445-10451.
doi: 10.1039/C3AY42093K URL

[46] Gong A Q, Zhu X S, Hu Y Y, Yu S H. A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumine and its analytical application[J]. Talanta, 2007,73(4):668-673.
doi: 10.1016/j.talanta.2007.04.041 URL

[47] Parajuli S, Jing X H, Miao W J. Electrogenerated chemiluminescence (ECL) quenching of the Ru(bpy)32+/TPrA system by the explosive TNT[J]. Electrochim. Acta, 2015,180:196-201.
doi: 10.1016/j.electacta.2015.08.107 URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.