Abstract
Metal nanoclusters (M NCs) consist of only several to a few hundred of metal atoms and possess core sizes less than 2 nm. Owing to the quantum size effect, the electronic states of M NCs evolve to discrete levels similar to the molecule energy gaps, other than a continuous density of states to produce plasmon characteristic of bulk metal nanoparticles (M NPs). In comparison with the conventional M NPs, M NCs exhibit dramatically unique electronic and optical properties, such as molecule-like energy gaps, strong photoluminescence and high catalytic properties, which make them promising for potential application in numerous fields, such as catalysis, chemical sensors, electronics, biological labeling and biomedicine. As a new type of highly efficient catalysts, MNCs have shown high catalytic activity and unique selectivity in many catalytic reactions, which are related to their ultrasmall size with relatively high surface area-to-volume ratio, high density of exposed active atoms, and the unique electronic structure different from that of bulk M NPs. For example, the M NCs showed good performances in many catalytic reactions, such as CO oxidation, propylene epoxidation, electrocatalytic water oxidation, propane dehydrogenation, acetylene cyclotrimerization and hydrogenation and polymerization reactions. M NCs can be used as model catalysts for theoretical simulation of the reaction pathway due to the precise compositions, atomically precise and tunable structures, which is helpful to study the intrinsic relationship between structure and property of nanostructure, and to rational design and fabricate advanced catalysts. In this review article, based on the present status of this field, we highlight the development of metal nanoclusters in recent years with focusing mainly on their application in electrocatalysis, including for fuel cell anode and cathode reactions, water splitting reaction and CO2 reduction. Finally, we give a brief outlook on the application of metal nanoclusters in electrocatalysis and the possible challenges.
Graphical Abstract
Keywords
metal nanocluster, electrocatalysis, fuel cells, water splitting reaction, CO2 reduction reaction
Publication Date
2021-04-28
Online Available Date
2021-03-12
Revised Date
2021-03-02
Received Date
2021-01-31
Recommended Citation
Zhi-Hua Zhuang, Wei Chen.
Application of Atomically Precise Metal Nanoclusters in Electrocatalysis[J]. Journal of Electrochemistry,
2021
,
27(2): 125-143.
DOI: 10.13208/j.electrochem.201246
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol27/iss2/6
References
[1]
Lu Y Z, Chen W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries[J]. Chem. Soc. Rev., 2012,41(9):3594-3623.
doi: 10.1039/c2cs15325d
URL
[2]
Jin R C, Zeng C J, Zhou M, Chen Y X. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities[J]. Chem. Rev., 2016,116(18):10346-10413.
doi: 10.1021/acs.chemrev.5b00703
URL
[3]
Ding C Q, Tian Y. Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH[J]. Biosens. Bioelectron., 2015,65:183-190.
doi: 10.1016/j.bios.2014.10.034
URL
[4]
Herzing A A, Kiely C J, Carley A F, Landon P, Hutchings G J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation[J]. Science, 2008,321(5894):1331-1335.
doi: 10.1126/science.1159639
URL
[5]
Zhuang Z H, Yang Q, Chen W. One-step rapid and facile synjournal of subnanometer-sized Pd6(C12H25S)11 clusters with ultra-high catalytic activity for 4-nitrophenol reduction[J]. ACS Sustainable Chem. Eng., 2019,7(3):2916-2923.
doi: 10.1021/acssuschemeng.8b06637
URL
[6]
Xie S H, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T. Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping[J]. ACS Catal., 2012,2(7):1519-1523.
doi: 10.1021/cs300252g
URL
[7] Brust M, Walker M, Bethell D, Schiffrin D, Whyman R. Synjournal of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system[J]. Chem. Commun., 1994,7:801-802.
[8]
Zhu M Z, Lanni E, Garg N, Bier M E, Jin R C. Kinetically kontrolled, high-yield synjournal of Au25 clusters[J]. J. Am.Chem. Soc., 2008,130(4):1138-1139.
doi: 10.1021/ja0782448
URL
[9]
Wu Z K, Lanni E, Chen W, Bier M E, Ly D, Jin R. High yield, large scale synjournal of thiolate-protected Ag7 clusters[J]. J. Am. Chem. Soc., 2009,131(46):16672-16674.
doi: 10.1021/ja907627f
URL
[10]
Yamamoto K, Imaoka T, Chun W J, Enoki O, Katoh H, Takenaga M, Sonoi A. Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions[J]. Nat. Chem., 2009,1(5):397-402.
doi: 10.1038/nchem.288
URL
[11]
Reetz M T, Helbig W. Size-selective synjournal of nanostructured transition metal clusters[J]. J. Am. Chem. Soc., 1994,116(16):7401-7402.
doi: 10.1021/ja00095a051
URL
[12]
Rao T U B, Nataraju B, Pradeep T. Ag9 quantum cluster through a solid-state route[J]. J. Am. Chem. Soc., 2010,132(46):16304-16307.
doi: 10.1021/ja105495n
URL
[13]
Zeng C J, Liu C Y, Pei Y, Jin R C. Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24[J]. ACS Nano, 2013,7(7):6138-6145.
doi: 10.1021/nn401971g
URL
[14]
Udaya Bhaskara Rao T, Pradeep T. Luminescent Ag7 and Ag8 clusters by interfacial synjournal[J]. Angew. Chem. Int. Ed., 2010,49(23):3925-3929.
doi: 10.1002/anie.200907120
URL
[15]
Shichibu Y, Negishi Y, Tsukuda T, Teranishi T. Large-scale synjournal of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters[J]. J. Am. Chem. Soc., 2005,127(39):13464-13465.
pmid: 16190687
[16]
Jupally V R, Dass A. Synjournal of Au130(SR)50 and Au130-x Agx(SR)50 nanomolecules through core size conversion of larger metal clusters[J]. PCCP, 2014,16(22):10473-10479.
doi: 10.1039/C3CP54343A
URL
[17]
Zhou T Y, Lin L P, Rong M C, Jiang Y Q, Chen X. Silver-gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing[J]. Anal. Chem., 2013,85(20):9839-9844.
doi: 10.1021/ac4023764
URL
[18]
Zhang J, Sasaki K, Sutter E, Adzic R R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007,315(5809):220-222.
doi: 10.1126/science.1134569
URL
[19]
Yin H J, Tang H J, Wang D, Gao Y, Tang Z Y. Facile synjournal of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction[J]. ACS Nano, 2012,6(9):8288-8297.
doi: 10.1021/nn302984x
URL
[20]
Lu Y Z, Chen W. Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction[J]. J. Power Sources, 2012,197:107-110.
doi: 10.1016/j.jpowsour.2011.09.033
URL
[21]
Wei W T, Lu Y Z, Chen W, Chen S W. One-pot synjournal, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters[J]. J. Am. Chem. Soc., 2011,133(7):2060-2063.
doi: 10.1021/ja109303z
URL
[22]
Zhao S, Zhang H, House S D, Jin R, Yang J C, Jin R. Ultrasmall palladium nanoclusters as effective catalyst for xygen reduction reaction[J]. ChemElectroChem, 2016,3(8):1225-1229.
doi: 10.1002/celc.201600053
URL
[23]
Jin R X, Zhao S, Liu C, Zhou M, Panapitiya G, Xing Y, Rosi N L, Lewis J P, Jin R C. Controlling Ag-doping in [AgxAu25-x(SC6H11)18]- nanoclusters, cryogenic optical, electronic and electrocatalytic properties[J]. Nanoscale, 2017,9(48):19183-19190.
doi: 10.1039/C7NR05871C
URL
[24]
Zhang R Z, Chen W. Non-precious Ir-V bimetallic nanoclusters assembled on reduced graphene nanosheets as catalysts for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2013,1(37):11457-11464.
doi: 10.1039/c3ta12067h
URL
[25]
Zhuang Z H, Du C, Li P, Zhang Z W, Fang Z Y, Guo J H, Chen W. Pt21(C4O4SH5)21 clusters: atomically precise synjournal and enhanced electrocatalytic activity for hydrogen generation[J]. Electrochim. Acta, 2021,368:137608.
doi: 10.1016/j.electacta.2020.137608
URL
[26]
Yang T T, Tan T L, Saidi W A. High activity toward the hydrogen evolution reaction on the edges of MoS2-supported platinum nanoclusters using cluster expansion and electrochemical modeling[J]. Chem. Mater., 2020,32(3):1315-1321.
doi: 10.1021/acs.chemmater.9b05244
URL
[27]
Li Y J, Pei W, He J T, Liu K, Qi W H, Gao X H, Zhou S, Xie H P, Yin K, Gao Y L, He J, Zhao J J, Hu J H, Chan T S, Li Z, Zhang G F, Liu M. Hybrids of PtRu nanoclusters and black phosphorus nanosheets for highly efficient alkaline hydrogen evolution reaction[J]. ACS Catal., 2019,9(12):10870-10875.
doi: 10.1021/acscatal.9b03506
URL
[28]
Kwon G, Ferguson G A, Heard C J, Tyo E C, Yin C, Debartolo J, Seifert S, Winans R E, Kropf A J, Greeley J, Johnston R L, Curtiss L A, Pellin M J, Vajda S. Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis[J]. ACS Nano, 2013,7(7):5808-5817.
doi: 10.1021/nn400772s
URL
[29]
Joya K S, Sinatra L, Abdulhalim L G, Joshi C P, Hedhili M N, Bakr O M, Hussain I. Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation[J]. Nanoscale, 2016,8(18):9695-9703.
doi: 10.1039/C6NR00709K
URL
[30]
Bahrami H, Faghri A. Review and advances of direct methanol fuel cells: Part II: Modeling and numerical simulation[J]. J. Power Sources, 2013,230:303-320.
doi: 10.1016/j.jpowsour.2012.12.009
URL
[31]
Mahata A, Choudhuri I, Pathak B. A cuboctahedral platinum (Pt79) nanocluster enclosed by well defined facets favours di-sigma adsorption and improves the reaction kinetics for methanol fuel cells[J]. Nanoscale, 2015,7(32):13438-13451.
doi: 10.1039/c5nr01575h
pmid: 26155948
[32]
Zhuang Z H, Chen W. Ultra-low loading of Pd5 nanoclusters on carbon nanotubes as bifunctional electrocatalysts for the oxygen reduction reaction and the ethanol oxidation reaction[J]. J. Colloid Interface Sci., 2019,538:699-708.
doi: 10.1016/j.jcis.2018.12.015
URL
[33]
Lu Y Z, Zhang C M, Li X K, Frojd A R, Xing W, Clayborne A Z, Chen W. Significantly enhanced electrocatalytic activity of Au25 clusters by single platinum atom doping[J]. Nano Energy, 2018,50:316-322.
doi: 10.1016/j.nanoen.2018.05.052
URL
[34]
Yeager E. Electrocatalysts for O2 reduction[J]. Electrochim. Acta, 1984,29(11):1527-1537.
doi: 10.1016/0013-4686(84)85006-9
URL
[35]
Imaoka T, Kitazawa H, Chun W J, Omura S, Albrecht K, Yamamoto K. Magic number Pt13 and misshapen Pt12 clusters: Which one is the better catalyst?[J]. J. Am. Chem. Soc., 2013,135(35):13089-13095.
doi: 10.1021/ja405922m
URL
[36] Imaoka T, Kitazawa H, Chun W J, Yamamoto K. Finding the most catalytically active platinum clusters with low atomicity[J]. Angew. Chem. Int. Ed., 2015,54(34):9809-9815.
[37]
Chen W, Chen S W. Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects[J]. Angew. Chem. Int. Ed., 2009,48(24):4386-4389.
doi: 10.1002/(ISSN)1521-3773
URL
[38]
Lu Y Z, Jiang Y Y, Gao X H, Chen W. Charge state-dependent catalytic activity of [Au25(SC12H25)18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide[J]. Chem. Commun., 2014,50(62):8464-8467.
doi: 10.1039/C4CC01841A
URL
[39]
Zhao G Q, Rui K, Dou S X, Sun W P. Heterostructures for electrochemical hydrogen evolution reaction: A review[J]. Adv. Funct. Mater., 2018,28(43):1803291.
doi: 10.1002/adfm.v28.43
URL
[40]
Wang S T, Gao X H, Hang X X, Zhu X F, Han H T, Liao W P, Chen W. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2016,138(50):16236-16239.
doi: 10.1021/jacs.6b11218
URL
[41]
Gao X H, Chen W. Highly stable and efficient Pd6(SR)12 cluster catalysts for the hydrogen and oxygen evolution reactions[J]. Chem. Commun., 2017,53(70):9733-9736.
doi: 10.1039/C7CC04787H
URL
[42]
Gao X H, Yu G T, Zheng L R, Zhang C M, Li H, Wang T, An P D, Liu M, Qiu X Q, Chen W. Strong electron coupling from the sub-nanometer Pd clusters confined in porous ceria nanorods for highly efficient electrochemical hydrogen eevolution reaction[J]. ACS Appl. Energy Mater., 2019,2(2):966-973.
doi: 10.1021/acsaem.8b01783
URL
[43]
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chem. Soc. Rev., 2017,46(2):337-365.
doi: 10.1039/C6CS00328A
URL
[44]
Zhao S, Jin R X, Abroshan H, Zeng C J, Zhang H, House S D, Gottlieb E, Kim H J, Yang J C, Jin R C. Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe2 interface[J]. J. Am. Chem. Soc., 2017,139(3):1077-1080.
doi: 10.1021/jacs.6b12529
URL
[45]
Wang W H, Himeda Y, Muckerman J T, Manbeck G F, Fujita E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction[J]. Chem. Rev., 2015,115(23):12936-12973.
doi: 10.1021/acs.chemrev.5b00197
URL
[46]
Kauffman D R, Alfonso D, Matranga C, Qian H F, Jin R C. Experimental and computational investigation of Au25 clusters and CO2: A unique interaction and enhanced electrocatalytic activity[J]. J. Am. Chem. Soc., 2012,134(24):10237-10243.
doi: 10.1021/ja303259q
URL
[47]
Kauffman D R, Alfonso D, Matranga C, Ohodnicki P, Deng X Y, Siva R C, Zeng C J, Jin R C. Probing active site chemistry with differently charged Au25q nanoclusters (q = 1, 0, +1)[J]. Chem. Sci., 2014,5(8):3151-3157.
doi: 10.1039/c4sc00997e
URL
[48]
Zhao S, Austin N, Li M, Song Y B, House S D, Bernhard S, Yang J C, Mpourmpakis G, Jin R C. Influence of atomic-level morphology on catalysis: The case of sphere and rod-like gold nanoclusters for CO2 electroreduction[J]. ACS Catal., 2018,8(6):4996-5001.
doi: 10.1021/acscatal.8b00365
URL
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons