•  
  •  
 

Corresponding Author

Wei Chen(chenw@sari.ac.cn)

Abstract

Metal nanoclusters (M NCs) consist of only several to a few hundred of metal atoms and possess core sizes less than 2 nm. Owing to the quantum size effect, the electronic states of M NCs evolve to discrete levels similar to the molecule energy gaps, other than a continuous density of states to produce plasmon characteristic of bulk metal nanoparticles (M NPs). In comparison with the conventional M NPs, M NCs exhibit dramatically unique electronic and optical properties, such as molecule-like energy gaps, strong photoluminescence and high catalytic properties, which make them promising for potential application in numerous fields, such as catalysis, chemical sensors, electronics, biological labeling and biomedicine. As a new type of highly efficient catalysts, MNCs have shown high catalytic activity and unique selectivity in many catalytic reactions, which are related to their ultrasmall size with relatively high surface area-to-volume ratio, high density of exposed active atoms, and the unique electronic structure different from that of bulk M NPs. For example, the M NCs showed good performances in many catalytic reactions, such as CO oxidation, propylene epoxidation, electrocatalytic water oxidation, propane dehydrogenation, acetylene cyclotrimerization and hydrogenation and polymerization reactions. M NCs can be used as model catalysts for theoretical simulation of the reaction pathway due to the precise compositions, atomically precise and tunable structures, which is helpful to study the intrinsic relationship between structure and property of nanostructure, and to rational design and fabricate advanced catalysts. In this review article, based on the present status of this field, we highlight the development of metal nanoclusters in recent years with focusing mainly on their application in electrocatalysis, including for fuel cell anode and cathode reactions, water splitting reaction and CO2 reduction. Finally, we give a brief outlook on the application of metal nanoclusters in electrocatalysis and the possible challenges.

Graphical Abstract

Keywords

metal nanocluster, electrocatalysis, fuel cells, water splitting reaction, CO2 reduction reaction

Publication Date

2021-04-28

Online Available Date

2021-03-12

Revised Date

2021-03-02

Received Date

2021-01-31

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.