Abstract
Electrochemical gating has emerged as a feasible and powerful method to tune single-molecule conductance. Herein, we demonstrate that the electron transport through single-molecule circuits with two benzene rings in parallel could be efficiently gated by electrochemistry. The molecular junctions with two parallel paths are fabricated with Au electrodes by STM break junction (STM-BJ) technique. Their conductance value exhibits a 2.82-fold enhancement by the constructive quantum interference compared to single-molecule junctions with single path for electron tunneling. Furthermore, the conductance of para-benzene based molecule could be electrochemically tuned with a modulation ratio of about 333%·V-1. With the help of DFT calculations, a V-shape spectra of energy-dependent transmission coefficients T(E) around E = EF leads to the conductance gating behavior. The current work sheds a light on the electrochemical gating of single-molecule circuits with parallel paths, and offers a new way to design molecular materials for a high-performance molecular device.
Graphical Abstract
Keywords
molecular junctions, electrochemical gating, molecular structure, ECSTM-BJ, constructive quantum interference
Publication Date
2021-04-28
Online Available Date
2021-02-18
Revised Date
2021-02-11
Received Date
2021-01-13
Recommended Citation
Jun-Qing Su, Yi-Fan Zhou, Ling Tong, Ya-Hao Wang, Ju-Fang Zheng, Jing-Zhe Chen, Xiao-Shun Zhou.
Electrochemical Gating Single-Molecule Circuits with Parallel Paths[J]. Journal of Electrochemistry,
2021
,
27(2): 195-201.
DOI:
Electrochemical gating has emerged as a feasible and powerful method to tune single-molecule conductance. Herein, we demonstrate that the electron transport through single-molecule circuits with two benzene rings in parallel could be efficiently gated by electrochemistry. The molecular junctions with two parallel paths are fabricated with Au electrodes by STM break junction (STM-BJ) technique. Their conductance value exhibits a 2.82-fold enhancement by the constructive quantum interference compared to single-molecule junctions with single path for electron tunneling. Furthermore, the conductance of para-benzene based molecule could be electrochemically tuned with a modulation ratio of about 333%·V-1. With the help of DFT calculations, a V-shape spectra of energy-dependent transmission coefficients T(E) around E = EF leads to the conductance gating behavior. The current work sheds a light on the electrochemical gating of single-molecule circuits with parallel paths, and offers a new way to design molecular materials for a high-performance molecular device.
Available at: https://jelectrochem.xmu.edu.cn/journal/vol27/iss2/8
References
[1]
Xiang D, Wang X L, Jia C C, Lee T, Guo X F. Molecular-scale electronics: from concept to function[J]. Chem. Rev., 2016,116(7):4318-4440.
doi: 10.1021/acs.chemrev.5b00680
URL
[2]
Brooke R J, Szumski D S, Vezzoli A, Higgins S J, Nichols R J, Schwarzacher, W. Dual control of molecular conductance through pH and potential in single-molecule devices[J]. Nano Lett., 2018,18(2):1317-1322.
doi: 10.1021/acs.nanolett.7b04995
URL
[3]
Li Z H, Smeu M, Afsari S, Xing Y J, Ratner M A, Borguet E. Single-molecule sensing of environmental pH-an STM break junction and NEGF-DFT approach[J]. Angew. Chem. Int. Ed., 2014,53(4):1098-1102.
doi: 10.1002/anie.201308398
URL
[4]
Cai S N, Deng W T, Huang F F, Chen L J, Tang C, He W X, Long S C, Li R H, Tan Z B, Liu J Y, Shi J, Liu Z T, Xiao Z Y, Zhang D Q, Hong W J. Light-driven reversible intermolecular proton transfer at single-molecule junctions[J]. Angew. Chem. Int. Ed., 2019,58(12):3829-3833.
doi: 10.1002/anie.v58.12
URL
[5]
Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F. Covalently bonded single-mole-cule junctions with stable and reversible photoswitched conductivity-SM[J]. Science, 2016,352(6292):1443-1445.
doi: 10.1126/science.aaf6298
URL
[6]
Sendler T, Luka-Guth K, Wieser M, Lokamani Wolf J, Helm M, Gemming S, Kerbusch J, Scheer E, Huhn T, Erbe A. Light-induced switching of tunable single-molecule junctions[J]. Adv. Sci., 2015,2(5):1500017.
doi: 10.1002/advs.201500017
URL
[7]
Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Sainctavit P, Arrio M A, Otero E, Joly L, Cezar J C, Cornia A, Sessoli R. Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets[J]. Nature, 2010,468(7322):417-421.
doi: 10.1038/nature09478
pmid: 20981008
[8]
Kay N J, Higgins S J, Jeppesen J O, Leary E, Lycoops J, Ulstrup J, Nichols R J. Single-molecule electrochemical gating in ionic liquids[J]. J. Am. Chem. Soc., 2012,134(40):16817-16826.
doi: 10.1021/ja307407e
URL
[9]
Song H, Kim Y, Jang Y H, Jeong H, Reed M A, Lee T. Observation of molecular orbital gating[J]. Nature, 2009,462(7276):1039-1043.
doi: 10.1038/nature08639
URL
[10]
Huang C C, Rudnev A V, Hong W J, Wandlowski T. Break junction under electrochemical gating: testbed for single-molecule electronics[J]. Chem. Soc. Rev., 2015,44(4):889-901.
doi: 10.1039/C4CS00242C
URL
[11]
Osorio H M, Catarelli S, Cea P, Gluyas J B G, Hartl F, Higgins S J, Leary E, Low P J, Martin S, Nichols R J, Tory J, Ulstrup J, Vezzoli A, Milan D C, Zeng Q . Electrochemical single-molecule transistors with optimized gate coupling[J]. J. Am. Chem. Soc., 2015,137(45):14319-14328.
doi: 10.1021/jacs.5b08431
URL
[12]
Díez-Pérez I, Li Z H, Guo S Y, Madden C, Huang H L, Che Y K, Yang X M, Zang L, Tao N J. Ambipolar transport in an electrochemically gated single-molecule field-effect transistor[J]. ACS Nano, 2012,6(8):7044-7052.
doi: 10.1021/nn302090t
pmid: 22789617
[13]
Ramachandran R, Li H B, Lo W Y, Neshchadin A, Yu L P, Hihath J. An electromechanical approach to understanding binding configurations in single-molecule devices[J]. Nano Lett., 2018,18(10):6638-6644.
doi: 10.1021/acs.nanolett.8b03415
URL
[14]
Zhou X S, Liu L, Fortgang P, Lefevre A S, Serra-Muns A, Raouafi N, Amatore C, Mao B W, Maisonhaute E, Schollhorn B. Do molecular conductances correlate with electrochemical rate constants? Experimental insights[J]. J. Am. Chem. Soc., 2011,133(19):7509-7516.
doi: 10.1021/ja201042h
URL
[15]
Sun Y Y, Peng Z L, Hou R, Liang J H, Zheng J F, Zhou X Y, Zhou X S, Jin S, Niu Z J, Mao B W. Enhancing electron transport in molecular wires by insertion of a ferrocene center[J]. Phys. Chem. Chem. Phys., 2014,16(6):2260-2267.
doi: 10.1039/c3cp53269k
URL
[16]
Yuan Y, Yan J F, Lin D Q, Mao B W, Yuan Y F. Ferrocene-alkynyl conjugated molecular wires: synjournal, characterization, and conductance properties[J]. Chem.-Eur. J., 2018,24(14):3545-3555.
doi: 10.1002/chem.201705176
URL
[17]
Xiao X Y, Brune D, He J, Lindsay S, Gorman C B, Tao N J. Redox-gated electron transport in electrically wired ferrocene molecules[J]. Chem. Phys., 2006,326(1):138-143.
doi: 10.1016/j.chemphys.2006.02.022
URL
[18]
Zhang F, Wu X H, Zhou Y F, Wang Y H, Zhou X S, Shao Y, Li J F, Jin S, Zheng J F. Improving gating efficiency of electron transport through redox-active molecular junctions with conjugated chains[J]. ChemElectroChem, 2020,7(6):1337-1341.
doi: 10.1002/celc.v7.6
URL
[19]
Darwish N, Díez-Pérez I, Guo S Y, Tao N J, Gooding J J, Paddon-Row M N. Single molecular switches: electrochemical gating of a single anthraquinone-based norbornylogous bridge molecule[J]. J. Phys. Chem. C, 2012,116(39):21093-21097.
doi: 10.1021/jp3066458
URL
[20]
Darwish N, Diez-Perez I, Da S P, Tao N J, Gooding J J, Paddon-Row M N. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule[J]. Angew. Chem. In. Ed., 2012,51(13):3203-3206.
doi: 10.1002/anie.v51.13
URL
[21]
Haiss W, van Zalinge H, Higgins S J, Bethell D, Hobenreich H, Schiffrin D J, Nichols R J. Redox state dependence of single molecule conductivity[J]. J. Am. Chem. Soc., 2003,125(50):15294-15295.
doi: 10.1021/ja038214e
URL
[22]
Capozzi B, Chen Q, Darancet P, Kotiuga M, Buzzeo M, Neaton J B, Nuckolls C, Venkataraman L. Tunable charge transport in single-molecule junctions via electrolytic gating[J]. Nano Lett., 2014,14(3):1400-1404.
doi: 10.1021/nl404459q
URL
[23]
Baghernejad M, Manrique D Z, Li C, Pope T, Zhumaev U, Pobelov I, Moreno-Garcia P, Kaliginedi V, Huang C, Hong W J, Lambert C, Wandlowski T. Highly-effective gating of single-molecule junctions: an electrochemical approach[J]. Chem. Commun., 2014,50(100):15975-15978.
doi: 10.1039/C4CC06519K
URL
[24]
Wang Y H, Yan F, Li D F, Xi Y F, Cao R, Zheng J F, Shao Y, Jin S, Chen J Z, Zhou X S. Enhanced gating performance of single-molecule conductance by heterocyclic molecules[J]. J. Phys. Chem. Lett., 2021,12(2):758-763.
doi: 10.1021/acs.jpclett.0c03430
URL
[25]
Bai J, Daaoub A, Sangtarash S, Li X H, Tang Y X, Zou Q, Sadeghi H, Liu S, Huang X J, Tan Z B, Liu J Y, Yang Y, Shi J, Meszaros G, Chen W B, Lambert C, Hong W J. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating[J]. Nat. Mater., 2019,18(4):364-369.
doi: 10.1038/s41563-018-0265-4
URL
[26]
Li Y Q, Buerkle M, Li G F, Rostamian A, Wang H, Wang Z X, Bowler D R, Miyazaki T, Xiang L M, Asai Y, Zhou G, Tao N J. Author correction: gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport[J]. Nat. Mater., 2020,19(1):127.
doi: 10.1038/s41563-019-0552-8
URL
[27]
Huang B, Liu X, Yuan Y, Hong Z W, Zheng J F, Pei L Q, Shao Y, Li J F, Zhou X S, Chen J Z, Jin S, Mao B W. Controlling and observing sharp-valleyed quantum interference effect in single molecular junctions[J]. J. Am. Chem. Soc., 2018,140(50):17685-17690.
doi: 10.1021/jacs.8b10450
URL
[28]
Borges A, Xia J L, Liu S H, Venkataraman L, Solomon G C. The role of through-space interactions in modulating constructive and destructive interference effects in benzene[J]. Nano Lett., 2017,17(7):4436-4442.
doi: 10.1021/acs.nanolett.7b01592
URL
[29]
Tao C P, Jiang C C, Wang Y H, Zheng J F, Shao Y, Zhou X S. Single-molecule sensing of interfacial acid-base chemistry[J]. J. Phys. Chem. Lett., 2020,11(23):10023-10028.
doi: 10.1021/acs.jpclett.0c03010
URL
[30]
Kiguchi M, Ohto T, Fujii S, Sugiyasu K, Nakajima S, Takeuchi M, Nakamura H. Single molecular resistive switch obtained via sliding multiple anchoring points and varying effective wire length[J]. J. Am. Chem. Soc., 2014,136(20):7327-7332.
doi: 10.1021/ja413104g
URL
[31]
Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataraman L, Hybertsen M S. Probing the conductance superposition law in single-molecule circuits with parallel paths[J]. Nat. Nanotech., 2012,7(10):663-667.
doi: 10.1038/nnano.2012.147
URL
[32]
Wang Y H, Li D F, Hong Z W, Liang J H, Han D, Zheng J F, Niu Z J, Mao B W, Zhou X S. Conductance of alkyl-based molecules with one, two and three chains measured by electrochemical STM break junction[J]. Electrochem. Commun., 2014,45:83-86.
doi: 10.1016/j.elecom.2014.05.020
URL
[33]
Zhang M, Yu L J, Huang Y F, Yan J W, Liu G K, Wu D Y, Tian Z Q, Mao B W. Extending the shell-isolated nanoparticle-enhanced Raman spectroscopy approach to interfacial ionic liquids at single crystal electrode surfaces[J]. Chem. Commun., 2014,50(94):14740-14743.
doi: 10.1039/C4CC06269H
URL
[34]
Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Phys. Rev. B, 2001,63(24):245407.
doi: 10.1103/PhysRevB.63.245407
URL
[35]
Chen J Z, Thygesen K S, Jacobsen K W. Ab initio none-quilibrium quantum transport and forces with the real-space projector augmented wave method[J]. Phys. Rev. B, 2012,85(15):155140.
doi: 10.1103/PhysRevB.85.155140
URL
[36]
Liu C Y, Wang H F, Ren Z G, Braunstein P, Lang J P. Fine-tuning of luminescence through changes in Au-S bond lengths as a function of temperature or solvent[J]. Inorg. Chem., 2019,58(13):8533-8540.
doi: 10.1021/acs.inorgchem.9b00845
URL
[37]
Pommerehne J, Vestweber H, Guss W, Mahrt R F, Bässler H, Porsch M, Daub J. Efficient two layer LEDs on a polymer blend basis[J]. Adv. Mater., 1995,7(6):551-554.
doi: 10.1002/adma.v7:6
URL
[38]
Low J Z, Capozzi B, Cui J, Wei S J, Venkataraman L, Campos L M. Tuning the polarity of charge carriers using electron deficient thiophenes[J]. Chem. Sci., 2017,8(4):3254-3259.
doi: 10.1039/C6SC05283E
URL
Included in
Analytical Chemistry Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons