Abstract
Electrochemical gating has emerged as a feasible and powerful method to tune single-molecule conductance. Herein, we demonstrate that the electron transport through single-molecule circuits with two benzene rings in parallel could be efficiently gated by electrochemistry. The molecular junctions with two parallel paths are fabricated with Au electrodes by STM break junction (STM-BJ) technique. Their conductance value exhibits a 2.82-fold enhancement by the constructive quantum interference compared to single-molecule junctions with single path for electron tunneling. Furthermore, the conductance of para-benzene based molecule could be electrochemically tuned with a modulation ratio of about 333%·V-1. With the help of DFT calculations, a V-shape spectra of energy-dependent transmission coefficients T(E) around E = EF leads to the conductance gating behavior. The current work sheds a light on the electrochemical gating of single-molecule circuits with parallel paths, and offers a new way to design molecular materials for a high-performance molecular device.
Graphical Abstract
Keywords
molecular junctions, electrochemical gating, molecular structure, ECSTM-BJ, constructive quantum interference
Publication Date
2021-04-28
Online Available Date
2021-02-18
Revised Date
2021-02-11
Received Date
2021-01-13
Recommended Citation
Jun-Qing Su, Yi-Fan Zhou, Ling Tong, Ya-Hao Wang, Ju-Fang Zheng, Jing-Zhe Chen, Xiao-Shun Zhou.
Electrochemical Gating Single-Molecule Circuits with Parallel Paths[J]. Journal of Electrochemistry,
2021
,
27(2): 195-201.
DOI:
Electrochemical gating has emerged as a feasible and powerful method to tune single-molecule conductance. Herein, we demonstrate that the electron transport through single-molecule circuits with two benzene rings in parallel could be efficiently gated by electrochemistry. The molecular junctions with two parallel paths are fabricated with Au electrodes by STM break junction (STM-BJ) technique. Their conductance value exhibits a 2.82-fold enhancement by the constructive quantum interference compared to single-molecule junctions with single path for electron tunneling. Furthermore, the conductance of para-benzene based molecule could be electrochemically tuned with a modulation ratio of about 333%·V-1. With the help of DFT calculations, a V-shape spectra of energy-dependent transmission coefficients T(E) around E = EF leads to the conductance gating behavior. The current work sheds a light on the electrochemical gating of single-molecule circuits with parallel paths, and offers a new way to design molecular materials for a high-performance molecular device.
Available at: https://jelectrochem.xmu.edu.cn/journal/vol27/iss2/8
Included in
Analytical Chemistry Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons