Abstract
Ternary transition metal nitrides ANiN (A = Li, Na, Mg, Ca) are potential electrode materials for rechargeable batteries. The physical properties, such as the thermodynamic stability, the electronic band gap as well as the elastic stability, are important for their battery applications. Here, comparative studies are performed for the structural, dynamic, elastic and electronic properties of ANiN by the first-principles method. The calculations on the cohesive energy versus unit-cell volume and phonon spectra are employed to determine the most stable structures of ANiN. The calculated elastic constants of the most stable structures indicate that the Born-Huang criterion for the elastic stability can all be satisfied, showing the elastic stability of the materials. The electronic structures calculations suggest that LiNiN and CaNiN are half-metals, MgNiN is magnetic metal, while NaNiN is a common metal. The magnetization of the materials is understood by the Stoner theory. Furthermore, the charge density plots have been used to illustrate the bonding between Ni and N atoms, which is mainly ionic mixed with covalent.
Graphical Abstract
Keywords
ANiN (A = Li, Na, Mg, Ca), structural stability, electronic properties, first-principles calculations
Publication Date
2021-06-28
Online Available Date
2021-04-20
Revised Date
2021-04-15
Received Date
2021-03-05
Recommended Citation
Xia-Min Huang, Li-Hong Zhang, Shun-Qing Wu, Yong Yang, Zi-Zhong Zhu.
Structural, Dynamic, Elastic and Electronic Properties of ANiN (A = Li, Na, Mg, Ca): First-Principles Calculations[J]. Journal of Electrochemistry,
2021
,
27(3): 339-350.
DOI: 10.13208/j.electrochem.210302
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol27/iss3/1
References
[1] He H N, Wang H Y, Tang Y G, Liu Y N. Current studies of anode materials for sodium-ion battery[J]. Prog. Chem., 2014, 26(4): 572-581.
[2]
Ma S, Jiang M D, Tao P, Song C Y, Wu J B, Wang J, Deng T, Shang W. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Prog. Nat. Sci., 2018, 28(6): 653-666.
doi: 10.1016/j.pnsc.2018.11.002
URL
[3] Kulova T L, Fateev V N, Seregina E A, Grigoriev A S. A brief review of post-lithium-ion batteries[J]. Int. J. Electrochem. Sci., 2020, 15(8): 7242-7259.
[4]
Chern M Y, Disalvo F J. Synjournal, structure, electric, and magnetic-properties of CaNiN[J]. J. Solid State Chem., 1990, 88(2): 459-464.
doi: 10.1016/0022-4596(90)90242-P
URL
[5]
Springborg M, Albers R C. Charge and dimensionality effects on the properties of CaNiN[J]. Phys. Rev. B, 2004, 69(23): 235115.
doi: 10.1103/PhysRevB.69.235115
URL
[6]
Green M T, Hughbanks T. Electronic-structures of nitrido-metalates — molecular and extended-chain ions[J]. Inorg. Chem., 1993, 32(24): 5611-5615.
doi: 10.1021/ic00076a031
URL
[7]
Stoeva Z, Gomez R, Gordon A G, Allan M, Gregory D H, Hix G B, Titman J J. Fast lithium ion diffusion in the ternary layered nitridometalate LiNiN[J]. J. Am. Chem. Soc., 2004, 126(13): 4066-4067.
doi: 10.1021/ja039603b
URL
[8]
Stoeva Z, Jager B, Gomez R, Messaoudi S, Ben Yahia M, Rocquefelte X, Hix G B, Wolf W, Titman J J, Gautier R, Herzig P, Gregory D H. Crystal chemistry and electronic structure of the metallic lithium ion conductor, LiNiN[J]. J. Am. Chem. Soc., 2007, 129(7): 1912-1920.
doi: 10.1021/ja063208e
URL
[9] Niewa R, Huang Z L, Schnelle W, Hu Z, Kniep R. Preparation, crystallographic, spectroscopic and magnetic characterization of low-valency nitridometalates Li2[(Li1-x Mx)N] with M = Cu, Ni[J]. Anorg. Allg. Chem., 2003, 629(10): 1778-1786.
[10]
Kanwal S, Rahman G. Defects-driven magnetism in bulk alpha-Li3N[J]. J. Magn. Magn. Mater., 2018, 466: 192-199.
doi: 10.1016/j.jmmm.2018.07.003
URL
[11]
Nishijima M, Kagohashi T, Imanishi M, Takeda Y, Yamamoto O, Kondo S. Synjournal and electrochemical studies of a new anode material, Li3-x CoxN[J]. Solid State Ion., 1996, 83(1-2): 107-111.
doi: 10.1016/0167-2738(95)00221-9
URL
[12] Shodai T, Okada S, Tobishima S, Yamaki J. Study of Li3-xMxN(M:Co, Ni or Cu) system for use as anode material in lithium rechargeable cells[J]. Solid State Ion., 1996, 86-8(2): 785-789.
[13]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3): 1758-1775.
doi: 10.1103/PhysRevB.59.1758
URL
[14]
Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6(1): 15-50.
doi: 10.1016/0927-0256(96)00008-0
URL
[15]
Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54(16): 11169-11186.
pmid: 9984901
[16]
Blochl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953-17979.
doi: 10.1103/PhysRevB.50.17953
URL
[17]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
doi: 10.1103/PhysRevLett.77.3865
URL
pmid: 10062328
[18]
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976, 13(12): 5188-5192.
doi: 10.1103/PhysRevB.13.5188
URL
[19]
Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study[J]. Phys. Rev. B, 1998, 57(3): 1505-1509.
doi: 10.1103/PhysRevB.57.1505
URL
[20]
Rohrbach A, Hafner J, Kresse G. Electronic correlation effects in transition-metal sulfides[J]. J. Phys.: Condes. Matter, 2003, 15(6): 979-996.
doi: 10.1088/0953-8984/15/6/325
URL
[21]
May K J, Kolpak A M. Improved description of perovskite oxide crystal structure and electronic properties using self-consistent Hubbard U corrections from ACBN0[J]. Phys. Rev. B, 2020, 101(16): 165117-165117.
doi: 10.1103/PhysRevB.101.165117
URL
[22]
Bouiadjra O B, Merad G, Raulot J M, Abdelkader H S, Esling C. A comparative study on the high and low symmetric structures of (LaMnO3)n/(LaNiO3)n superlattices by first-principles calculations[J]. J. Magn. Magn. Mater., 2020, 499: 166251.
doi: 10.1016/j.jmmm.2019.166251
URL
[23] Serdtsev A V, Solodovnikov S F, Medvedeva N I. Sodium diffusion and redox properties of alluaudite Na2+2xM2-x (MoO4)3(M = Fe, Co, Ni) from DFT+U study[J]. Mater. Today Commun., 2020, 22: 100825.
[24]
Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures[J]. Phys. Rev. B, 2008, 78(13): 134106.
doi: 10.1103/PhysRevB.78.134106
URL
[25]
Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. APL Mater., 2013, 1(1): 011002.
doi: 10.1063/1.4812323
URL
[26]
Murnaghan F D. The compressibility of media under extreme pressures[J]. Proc. Natl. Acad. Sci., USA, 1944, 30: 244-247.
doi: 10.1073/pnas.30.9.244
URL
[27] Cabana J, Stoeva Z, Titman J J, Gregory D H, Palacin M R. Towards new negative electrode materials for Li-ion batteries: Electrochemical properties of LiNiN[J]. Chem. Mater., 2008, 20(5): 1676-1678.
[28]
Hu C H, Yang Y, Zhu Z Z. Structural stability and electronic properties of LiNiN[J]. Solid State Commun., 2010, 150(13-14): 669-674.
doi: 10.1016/j.ssc.2009.12.020
URL
[29]
Wang Y X. Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations[J]. Appl. Phys. Lett., 2007, 91(10): 101904.
doi: 10.1063/1.2780077
URL
[30]
Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Phys. Rev. B, 2007, 76(5): 054115.
doi: 10.1103/PhysRevB.76.054115
URL
[31]
Hou Z F. Elastic properties and electronic structures of antiperovskite-type InNCo3 and InNNi3[J]. Solid State Commun., 2010, 150(39-40): 1874-1879.
doi: 10.1016/j.ssc.2010.07.047
URL
[32] Voigt W. The textbook of crystal physics[M]. Teubner B G (Ed.), Leipzig und Berlin, 1928.
[33] Reuss A. Stresses constant in composite, rule of mixtures for compliance components[J]. J. Appl. Math. Mech., 1929, 9(1): 49-58.
[34]
Hill R. The elastic behavior of crystalline aggregate[J]. Proc. Phys. Soc., London, Sect. A, 1952, 65(5): 349-354.
doi: 10.1088/0370-1298/65/5/307
URL
[35]
Seo D K, Kim S H. Nature of Stoner condition for metallic ferromagnetism[J]. J. Comput. Chem., 2008, 29(13): 2172-2176.
doi: 10.1002/jcc.v29:13
URL
[36]
Janak J F. Uniform susceptibilities of metallic elements[J]. Phys. Rev. B, 1977, 16(1): 255-262.
doi: 10.1103/PhysRevB.16.255
URL
[37]
Wu S Q, Cai N L, Zhu Z Z, Yang Y. Ab initio study on the Li deintercalation in ternary lithium nitridocuprate Li2.5Cu0.5N[J]. Electrochim. Acta, 2008, 53(27): 7915-7920.
doi: 10.1016/j.electacta.2008.05.073
URL