•  
  •  
 

Corresponding Author

Zi-Zhong Zhu(zzhu@xmu.edu.cn)

Abstract

Ternary transition metal nitrides ANiN (A = Li, Na, Mg, Ca) are potential electrode materials for rechargeable batteries. The physical properties, such as the thermodynamic stability, the electronic band gap as well as the elastic stability, are important for their battery applications. Here, comparative studies are performed for the structural, dynamic, elastic and electronic properties of ANiN by the first-principles method. The calculations on the cohesive energy versus unit-cell volume and phonon spectra are employed to determine the most stable structures of ANiN. The calculated elastic constants of the most stable structures indicate that the Born-Huang criterion for the elastic stability can all be satisfied, showing the elastic stability of the materials. The electronic structures calculations suggest that LiNiN and CaNiN are half-metals, MgNiN is magnetic metal, while NaNiN is a common metal. The magnetization of the materials is understood by the Stoner theory. Furthermore, the charge density plots have been used to illustrate the bonding between Ni and N atoms, which is mainly ionic mixed with covalent.

Graphical Abstract

Keywords

ANiN (A = Li, Na, Mg, Ca), structural stability, electronic properties, first-principles calculations

Publication Date

2021-06-28

Online Available Date

2021-04-20

Revised Date

2021-04-15

Received Date

2021-03-05

References

[1] He H N, Wang H Y, Tang Y G, Liu Y N. Current studies of anode materials for sodium-ion battery[J]. Prog. Chem., 2014, 26(4): 572-581.

[2] Ma S, Jiang M D, Tao P, Song C Y, Wu J B, Wang J, Deng T, Shang W. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Prog. Nat. Sci., 2018, 28(6): 653-666.
doi: 10.1016/j.pnsc.2018.11.002 URL

[3] Kulova T L, Fateev V N, Seregina E A, Grigoriev A S. A brief review of post-lithium-ion batteries[J]. Int. J. Electrochem. Sci., 2020, 15(8): 7242-7259.

[4] Chern M Y, Disalvo F J. Synjournal, structure, electric, and magnetic-properties of CaNiN[J]. J. Solid State Chem., 1990, 88(2): 459-464.
doi: 10.1016/0022-4596(90)90242-P URL

[5] Springborg M, Albers R C. Charge and dimensionality effects on the properties of CaNiN[J]. Phys. Rev. B, 2004, 69(23): 235115.
doi: 10.1103/PhysRevB.69.235115 URL

[6] Green M T, Hughbanks T. Electronic-structures of nitrido-metalates — molecular and extended-chain ions[J]. Inorg. Chem., 1993, 32(24): 5611-5615.
doi: 10.1021/ic00076a031 URL

[7] Stoeva Z, Gomez R, Gordon A G, Allan M, Gregory D H, Hix G B, Titman J J. Fast lithium ion diffusion in the ternary layered nitridometalate LiNiN[J]. J. Am. Chem. Soc., 2004, 126(13): 4066-4067.
doi: 10.1021/ja039603b URL

[8] Stoeva Z, Jager B, Gomez R, Messaoudi S, Ben Yahia M, Rocquefelte X, Hix G B, Wolf W, Titman J J, Gautier R, Herzig P, Gregory D H. Crystal chemistry and electronic structure of the metallic lithium ion conductor, LiNiN[J]. J. Am. Chem. Soc., 2007, 129(7): 1912-1920.
doi: 10.1021/ja063208e URL

[9] Niewa R, Huang Z L, Schnelle W, Hu Z, Kniep R. Preparation, crystallographic, spectroscopic and magnetic characterization of low-valency nitridometalates Li2[(Li1-x Mx)N] with M = Cu, Ni[J]. Anorg. Allg. Chem., 2003, 629(10): 1778-1786.

[10] Kanwal S, Rahman G. Defects-driven magnetism in bulk alpha-Li3N[J]. J. Magn. Magn. Mater., 2018, 466: 192-199.
doi: 10.1016/j.jmmm.2018.07.003 URL

[11] Nishijima M, Kagohashi T, Imanishi M, Takeda Y, Yamamoto O, Kondo S. Synjournal and electrochemical studies of a new anode material, Li3-x CoxN[J]. Solid State Ion., 1996, 83(1-2): 107-111.
doi: 10.1016/0167-2738(95)00221-9 URL

[12] Shodai T, Okada S, Tobishima S, Yamaki J. Study of Li3-xMxN(M:Co, Ni or Cu) system for use as anode material in lithium rechargeable cells[J]. Solid State Ion., 1996, 86-8(2): 785-789.

[13] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3): 1758-1775.
doi: 10.1103/PhysRevB.59.1758 URL

[14] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6(1): 15-50.
doi: 10.1016/0927-0256(96)00008-0 URL

[15] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54(16): 11169-11186.
pmid: 9984901

[16] Blochl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953-17979.
doi: 10.1103/PhysRevB.50.17953 URL

[17] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
doi: 10.1103/PhysRevLett.77.3865 URL pmid: 10062328

[18] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976, 13(12): 5188-5192.
doi: 10.1103/PhysRevB.13.5188 URL

[19] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study[J]. Phys. Rev. B, 1998, 57(3): 1505-1509.
doi: 10.1103/PhysRevB.57.1505 URL

[20] Rohrbach A, Hafner J, Kresse G. Electronic correlation effects in transition-metal sulfides[J]. J. Phys.: Condes. Matter, 2003, 15(6): 979-996.
doi: 10.1088/0953-8984/15/6/325 URL

[21] May K J, Kolpak A M. Improved description of perovskite oxide crystal structure and electronic properties using self-consistent Hubbard U corrections from ACBN0[J]. Phys. Rev. B, 2020, 101(16): 165117-165117.
doi: 10.1103/PhysRevB.101.165117 URL

[22] Bouiadjra O B, Merad G, Raulot J M, Abdelkader H S, Esling C. A comparative study on the high and low symmetric structures of (LaMnO3)n/(LaNiO3)n superlattices by first-principles calculations[J]. J. Magn. Magn. Mater., 2020, 499: 166251.
doi: 10.1016/j.jmmm.2019.166251 URL

[23] Serdtsev A V, Solodovnikov S F, Medvedeva N I. Sodium diffusion and redox properties of alluaudite Na2+2xM2-x (MoO4)3(M = Fe, Co, Ni) from DFT+U study[J]. Mater. Today Commun., 2020, 22: 100825.

[24] Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures[J]. Phys. Rev. B, 2008, 78(13): 134106.
doi: 10.1103/PhysRevB.78.134106 URL

[25] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. APL Mater., 2013, 1(1): 011002.
doi: 10.1063/1.4812323 URL

[26] Murnaghan F D. The compressibility of media under extreme pressures[J]. Proc. Natl. Acad. Sci., USA, 1944, 30: 244-247.
doi: 10.1073/pnas.30.9.244 URL

[27] Cabana J, Stoeva Z, Titman J J, Gregory D H, Palacin M R. Towards new negative electrode materials for Li-ion batteries: Electrochemical properties of LiNiN[J]. Chem. Mater., 2008, 20(5): 1676-1678.

[28] Hu C H, Yang Y, Zhu Z Z. Structural stability and electronic properties of LiNiN[J]. Solid State Commun., 2010, 150(13-14): 669-674.
doi: 10.1016/j.ssc.2009.12.020 URL

[29] Wang Y X. Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations[J]. Appl. Phys. Lett., 2007, 91(10): 101904.
doi: 10.1063/1.2780077 URL

[30] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Phys. Rev. B, 2007, 76(5): 054115.
doi: 10.1103/PhysRevB.76.054115 URL

[31] Hou Z F. Elastic properties and electronic structures of antiperovskite-type InNCo3 and InNNi3[J]. Solid State Commun., 2010, 150(39-40): 1874-1879.
doi: 10.1016/j.ssc.2010.07.047 URL

[32] Voigt W. The textbook of crystal physics[M]. Teubner B G (Ed.), Leipzig und Berlin, 1928.

[33] Reuss A. Stresses constant in composite, rule of mixtures for compliance components[J]. J. Appl. Math. Mech., 1929, 9(1): 49-58.

[34] Hill R. The elastic behavior of crystalline aggregate[J]. Proc. Phys. Soc., London, Sect. A, 1952, 65(5): 349-354.
doi: 10.1088/0370-1298/65/5/307 URL

[35] Seo D K, Kim S H. Nature of Stoner condition for metallic ferromagnetism[J]. J. Comput. Chem., 2008, 29(13): 2172-2176.
doi: 10.1002/jcc.v29:13 URL

[36] Janak J F. Uniform susceptibilities of metallic elements[J]. Phys. Rev. B, 1977, 16(1): 255-262.
doi: 10.1103/PhysRevB.16.255 URL

[37] Wu S Q, Cai N L, Zhu Z Z, Yang Y. Ab initio study on the Li deintercalation in ternary lithium nitridocuprate Li2.5Cu0.5N[J]. Electrochim. Acta, 2008, 53(27): 7915-7920.
doi: 10.1016/j.electacta.2008.05.073 URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.