Abstract
In-situ EC-NMR technique can be used to monitor the electrochemical reaction process in real-time and to explain the reaction mechanism at the molecular level, which is a promising and non-destructive online detection technology. This article for the first time reports the design and production of in-situEC-NMR three-electrode single-chamber electrolytic cell using silicon-based boron-doped diamond (Si/BDD) as the working electrode. Research shows that the geometric size of Si/BDD electrode being 12.5 mm 1.2 mm 0.5 mm in the NMR detection zone is small and the thickness of the electrode material is thin, which accounts for the less hindrance to the radio frequency field, and correspondingly the less damage to the uniformity of the magnetic field. The developed EC-NMR electrolytic cell was tested, and a classic electrochemical reaction of electrooxidation from hydroquinone (QH2) to benzoquinone (Q) was used as a model system to study the entire dynamic process in-situ. After electrolysis of 0.1 mol·L-1 QH2 at a constant potential of 1.2 V for 64 min, it is detected that the characteristic peak intensity of QH2 at 6.58 ppm was gradually decreased, and the characteristic Q peak at 6.83 ppm was gradually generated. The NMR spectrum peak did not split or broaden significantly during the reaction. The results demonstrate that the in-situ EC-NMR electrolytic cell designed and prepared in this paper can be effectively used for the qualitative and quantitative analyses of the reactants and products in electrochemical reactions, which thus will play an important role in the subsequent researches on electrochemical in-situ NMR spectroscopy.
Graphical Abstract
Keywords
Bi/BDD electrode, in-situ EC-NMR, EC-NMR electrolytic cell, electrooxidation, hydroquinone
Publication Date
2021-06-28
Online Available Date
2021-06-28
Revised Date
2020-08-24
Received Date
2020-07-22
Recommended Citation
Hao Peng, Hui-Jun Sun, Zhi-You Zhou, Lin-Fan Shen, Long Huang, Shuo-Hui Cao, Shi-Gang Sun.
Design and Fabrication of the Electrolytic Cell with Silicon-Based Boron-Doped Diamond Electrode and Its Feasibility forin-Situ Nuclear Magnetic Resonance Study[J]. Journal of Electrochemistry,
2021
,
27(3): 332-338.
DOI: In-situ EC-NMR technique can be used to monitor the electrochemical reaction process in real-time and to explain the reaction mechanism at the molecular level, which is a promising and non-destructive online detection technology. This article for the first time reports the design and production of in-situEC-NMR three-electrode single-chamber electrolytic cell using silicon-based boron-doped diamond (Si/BDD) as the working electrode. Research shows that the geometric size of Si/BDD electrode being 12.5 mm 1.2 mm 0.5 mm in the NMR detection zone is small and the thickness of the electrode material is thin, which accounts for the less hindrance to the radio frequency field, and correspondingly the less damage to the uniformity of the magnetic field. The developed EC-NMR electrolytic cell was tested, and a classic electrochemical reaction of electrooxidation from hydroquinone (QH2) to benzoquinone (Q) was used as a model system to study the entire dynamic process in-situ. After electrolysis of 0.1 mol·L-1 QH2 at a constant potential of 1.2 V for 64 min, it is detected that the characteristic peak intensity of QH2 at 6.58 ppm was gradually decreased, and the characteristic Q peak at 6.83 ppm was gradually generated. The NMR spectrum peak did not split or broaden significantly during the reaction. The results demonstrate that the in-situ EC-NMR electrolytic cell designed and prepared in this paper can be effectively used for the qualitative and quantitative analyses of the reactants and products in electrochemical reactions, which thus will play an important role in the subsequent researches on electrochemical in-situ NMR spectroscopy.
Available at: https://jelectrochem.xmu.edu.cn/journal/vol27/iss3/10
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons