Abstract
The conversion of glycerol to value-added products has received considerable attention recently because the booming biodiesel industry produces a large amount of glycerol as a byproduct. Among various means, electrocatalytic oxidation of glycerol is appealing owing to its environmental friendliness and high efficiency. However, electrooxidation of glycerol is very complex, involving multiple electron and proton transfer processes with many reaction pathways. How to rationally design catalysts with high selectivity toward targeted products is an overarching challenge, and of both fundamental and practical significance. In this minireview we aim to provide an overview of recent advancements in electrooxidation of glycerol focusing mainly on Pt- and Pd-based catalysts. We start with summarizing fundamental understandings of factors dictating catalytic activity and selectivity garnered fromin-situ and online spectrometric experimental studies as well as from theoretical works. We then use selective examples to demonstrate how these factors are manifested in the development of highly efficient glycerol electrooxidation catalysts. Finally, we summarize the key issues to be addressed in future studies.
Graphical Abstract
Keywords
glycerol electrooxidation, electrosynthesis, electrocatalysis mechanism, rational design of electrocatalysts
Publication Date
2021-06-28
Online Available Date
2021-04-10
Revised Date
2021-03-26
Received Date
2021-02-21
Recommended Citation
Wei-Yi Zhang, Xian-Yin Ma, Shou-Zhong Zou, Wen-Bin Cai.
Recent Advances in Glycerol Electrooxidation on Pt and Pd: from Reaction Mechanisms to Catalytic Materials[J]. Journal of Electrochemistry,
2021
,
27(3): 233-256.
DOI: 10.13208/j.electrochem.201252
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol27/iss3/7
References
[1] Chen Y X, Lavacchi A, Miller H A, Bevilacqua M, Filippi J, Innocenti M, Marchionni A, Oberhauser W, Wang L, Vizza F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis[J]. Nat. Commun., 2014, 5(1): 4036.
doi: 10.1038/ncomms5036 URL
[2] Xu Y, Zhang B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions[J]. ChemElectroChem, 2019, 6(13): 3214-3226.
doi: 10.1002/celc.v6.13 URL
[3] Garlyyev B, Xue S, Fichtner J, Bandarenka A S, Andronescu C. Prospects of value-added chemicals and hydrogen via electrolysis[J]. ChemSusChem, 2020, 13(10): 2513-2521.
doi: 10.1002/cssc.v13.10 URL
[4] Miller H A, Lavacchi A, Vizza F. Storage of renewable energy in fuels and chemicals through electrochemical reforming of bioalcohols[J]. Curr. Opin. Electrochem., 2020, 21: 140-145.
[5] Holade Y, Tuleushova N, Tingry S, Servat K, Napporn T W, Guesmi H, Cornu D, Kokoh K B. Recent advances in the electrooxidation of biomass-based organic molecules for energy, chemicals and hydrogen production[J]. Catal. Sci. Technol., 2020, 10(10): 3071-3112.
doi: 10.1039/C9CY02446H URL
[6] Houache M S E, Hughes K, Baranova E A. Study on catalyst selection for electrochemical valorization of glycerol[J]. Sustain. Energy Fuels, 2019, 3(8): 1892-1915.
doi: 10.1039/C9SE00108E URL
[7] Katryniok B, Kimura H, Skrzyńska E, Girardon J S, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F. Selective catalytic oxidation of glycerol: perspectives for high value chemicals[J]. Green Chem., 2011, 13(8): 1960-1979.
doi: 10.1039/c1gc15320j URL
[8] Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F. Improved utilisation of renewable resources: New important derivatives of glycerol[J]. Green Chem., 2008, 10(1): 13-30.
doi: 10.1039/B710561D URL
[9] Katryniok B, Paul S, Dumeignil F. Recent developments in the field of catalytic dehydration of glycerol to acrolein[J]. ACS Catal., 2013, 3(8): 1819-1834.
doi: 10.1021/cs400354p URL
[10] Zhou C H, Beltramini J N, Fan Y X, Lu G Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals[J]. Chem. Soc. Rev., 2008, 37(3): 527-549.
doi: 10.1039/B707343G URL
[11] Bagheri S, Julkapli N M, Yehye W A. Catalytic conversion of biodiesel derived raw glycerol to value added products[J]. Renew. Sust. Energ. Rev., 2015, 41: 113-127.
doi: 10.1016/j.rser.2014.08.031 URL
[12] Nda-Umar U, Ramli I, Taufiq-Yap Y, Muhamad E. An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals[J]. Catalysts, 2018, 9(1): 15.
doi: 10.3390/catal9010015 URL
[13] Simões M, Baranton S, Coutanceau C. Electrochemical valorisation of glycerol[J]. ChemSusChem, 2012, 5(11): 2106-2124.
doi: 10.1002/cssc.v5.11 URL
[14] Dodekatos G, Schünemann S, Tüysüz H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation[J]. ACS Catal., 2018, 8(7): 6301-6333.
doi: 10.1021/acscatal.8b01317 URL
[15] Talebian-Kiakalaieh A, Amin N A S, Rajaei K, Tarighi S. Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes[J]. Appl. Energy, 2018, 230: 1347-1379.
doi: 10.1016/j.apenergy.2018.09.006 URL
[16] Coutanceau C, Baranton S, Kouamé R S B. Selective electrooxidation of glycerol into value-added chemicals: A short overview[J]. Front. Chem., 2019, 7: 100.
doi: 10.3389/fchem.2019.00100 URL
[17] Rahim S A N M, Lee C S, Abnisa F, Aroua M K, Daud W A W, Cognet P, Pérès Y. A review of recent developments on kinetics parameters for glycerol electrochemical conversion - A by-product of biodiesel[J]. Sci. Total Environ., 2020, 705: 135137.
doi: 10.1016/j.scitotenv.2019.135137 URL
[18] Antolini E. Glycerol electro-oxidation in alkaline media and alkaline direct glycerol fuel cells[J]. Catalysts, 2019, 9(12): 980.
doi: 10.3390/catal9120980 URL
[19] Alaba P A, Lee C S, Abnisa F, Aroua M K, Cognet P, Pérès Y, Wan Daud W M A. A review of recent progress on electrocatalysts toward efficient glycerol electrooxidation[J]. Rev. Chem. Eng., 2020: 20190013.
[20] Braunberger T L, Nahhas A F, Katz L M, Sadrieh N, Lim H W. Dihydroxyacetone: A review[J]. J. Drugs Dermatol., 2018, 17(4): 387-391.
pmid: 29601614
[21] Sharad J. Glycolic acid peel therapy - a current review[J]. Clin. Cosmet. Investig. Dermatol., 2013, 6: 281-288.
[22] Johnson D T, Taconi K A. The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production[J]. Environ. Prog., 2007, 26(4): 338-348.
doi: 10.1002/(ISSN)1547-5921 URL
[23] Fernández P S, Fernandes Gomes J, Angelucci C A, Tereshchuk P, Martins C A, Camara G A, Martins M E, Da Silva J L F, Tremiliosi-Filho G. Establishing a link between well-ordered Pt(100) surfaces and real systems: How do random superficial defects influence the electro-oxidation of glycerol?[J]. ACS Catal., 2015, 5(7): 4227-4236.
doi: 10.1021/acscatal.5b00451 URL
[24] Garcia A C, Kolb M J, van Nierop y Sanchez C, Vos J, Birdja Y Y, Kwon Y, Tremiliosi-Filho G, Koper M T M. Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol[J]. ACS Catal., 2016, 6(7): 4491-4500.
doi: 10.1021/acscatal.6b00709 URL
[25] Kwon Y, Birdja Y, Spanos I, Rodriguez P, Koper M T M. Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth[J]. ACS Catal., 2012, 2(5): 759-764.
doi: 10.1021/cs200599g URL
[26] de Souza M B C, Vicente R A, Yukuhiro V V Y, V. M. T. Pires C T G, Cheuquepán W, Bott-Neto J L, Solla-Gullón J, Fernández P S. Bi-modified Pt electrodes toward glycerol electrooxidation in alkaline solution: Effects on activity and selectivity[J]. ACS Catal., 2019, 9(6): 5104-5110.
doi: 10.1021/acscatal.9b00190 URL
[27] de Souza M B C, Yukuhiro V Y, Vicente R A, Vilela Menegaz Teixeira Pires C T G, Bott-Neto J L, Fernández P S. Pb- and Bi-modified Pt electrodes toward glycerol electrooxidation in alkaline media. Activity, selectivity, and the importance of the Pt atoms arrangement[J]. ACS Catal., 2020, 10(3): 2131-2137.
doi: 10.1021/acscatal.9b04805 URL
[28] Gomes J F, Tremiliosi-Filho G. Spectroscopic studies of the glycerol electro-oxidation on polycrystalline Au and Pt surfaces in acidic and alkaline media[J]. Electrocatalysis, 2011, 2(2): 96-105.
doi: 10.1007/s12678-011-0039-0 URL
[29] Fernández P S, Martins M E, Camara G A. New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes[J]. Electrochim. Acta, 2012, 66: 180-187.
doi: 10.1016/j.electacta.2012.01.069 URL
[30] Fernández P S, Martins M E, Martins C A, Camara G A. The electro-oxidation of isotopically labeled glycerol on platinum: New information on C-C bond cleavage and CO2 production[J]. Electrochem. Commun., 2012, 15(1): 14-17.
doi: 10.1016/j.elecom.2011.11.013 URL
[31] Fernández P S, Martins C A, Martins M E, Camara G A. Electrooxidation of glycerol on platinum nanoparticles: Deciphering how the position of each carbon affects the oxidation pathways[J]. Electrochim. Acta, 2013, 112: 686-691.
doi: 10.1016/j.electacta.2013.09.032 URL
[32] Fernández P S, Tereshchuk P, Angelucci C A, Gomes J F, Garcia A C, Martins C A, Camara G A, Martins M E, Da Silva J L F, Tremiliosi-Filho G. How do random superficial defects influence the electro-oxidation of glycerol on Pt(111) surfaces?[J]. Phys. Chem. Chem. Phys., 2016, 18(36): 25582-25591.
pmid: 27711508
[33] Schnaidt J, Heinen M, Denot D, Jusys Z, Jürgen Behm R. Electrooxidation of glycerol studied by combined in situ IR spectroscopy and online mass spectrometry under continuous flow conditions[J]. J. Electroanal. Chem., 2011, 661(1): 250-264.
doi: 10.1016/j.jelechem.2011.08.011 URL
[34] Huang L, Sun J Y, Cao S H, Zhan M, Ni Z R, Sun H J, Chen Z, Zhou Z Y, Sorte E G, Tong Y J, Sun S G. Combined EC-NMR and in situ FTIR spectroscopic studies of glycerol electrooxidation on Pt/C, PtRu/C, and PtRh/C[J]. ACS Catal., 2016, 6(11): 7686-7695.
doi: 10.1021/acscatal.6b02097 URL
[35] Sandrini R M L M, Sempionatto J R, Herrero E, Feliu J M, Souza-Garcia J, Angelucci C A. Mechanistic aspects of glycerol electrooxidation on Pt(111) electrode in alkaline media[J]. Electrochem. Commun., 2018, 86: 149-152.
doi: 10.1016/j.elecom.2017.11.027 URL
[36] Sandrini R M L M, Sempionatto J R, Tremiliosi-Filho G, Herrero E, Feliu J M, Souza-Garcia J, Angelucci C A. Electrocatalytic oxidation of glycerol on platinum single crystals in alkaline media[J]. ChemElectroChem, 2019, 6(16): 4238-4245.
doi: 10.1002/celc.201900311
[37] Gomes J F, de Paula F B C, Gasparotto L H S, Tremiliosi-Filho G. The influence of the Pt crystalline surface orientation on the glycerol electro-oxidation in acidic media[J]. Electrochim. Acta, 2012, 76: 88-93.
doi: 10.1016/j.electacta.2012.04.144 URL
[38] Holade Y, Morais C, Servat K, Napporn T W, Kokoh K B. Toward the electrochemical valorization of glycerol: Fourier transform infrared spectroscopic and chromatographic studies[J]. ACS Catal., 2013, 3(10): 2403-2411.
doi: 10.1021/cs400559d URL
[39] Zalineeva A, Baranton S, Coutanceau C. How do Bi-mo-dified palladium nanoparticles work towards glycerol electrooxidation? Anin situ FTIR study[J]. Electrochim. Acta, 2015, 176: 705-717.
doi: 10.1016/j.electacta.2015.07.073 URL
[40] Coutanceau C, Zalineeva A, Baranton S, Simoes M. Modification of palladium surfaces by bismuth adatoms or clusters: Effect on electrochemical activity and selectivity towards polyol electrooxidation[J]. Int. J. Hydrogen Energy, 2014, 39(28): 15877-15886.
doi: 10.1016/j.ijhydene.2014.03.076 URL
[41] Garcia A C, Birdja Y Y, Tremiliosi-Filho G, Koper M T M. Glycerol electro-oxidation on bismuth-modified platinum single crystals[J]. J. Catal., 2017, 346: 117-124.
doi: 10.1016/j.jcat.2016.12.013 URL
[42] Araujo H R, Zanata C R, Teixeira-Neto E, de Lima R B, Batista B C, Giz M J, Camara G A. How the adsorption of Sn on Pt (100) preferentially oriented nanoparticles affects the pathways of glycerol electro-oxidation[J]. Electrochim. Acta, 2019, 297: 61-69.
doi: 10.1016/j.electacta.2018.11.181 URL
[43] Jeffery D Z, Camara G A. The formation of carbon dioxide during glycerol electrooxidation in alkaline media: First spectroscopic evidences[J]. Electrochem. Commun., 2010, 12(8): 1129-1132.
doi: 10.1016/j.elecom.2010.06.001 URL
[44] Leung L W H, Weaver M J. Influence of adsorbed carbon monoxide on electrocatalytic oxidation of simple organic molecules at platinum and palladium electrodes in acidic solution: A survey using real-time FTIR spectroscopy[J]. Langmuir, 1990, 6(2): 323-333.
doi: 10.1021/la00092a006 URL
[45] Kwon Y, Schouten K J P, Koper M T M. Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes[J]. ChemCatChem, 2011, 3(7): 1176-1185.
doi: 10.1002/cctc.v3.7 URL
[46] Kwon Y, Koper M T M. Combining voltammetry with HPLC: Application to electro-oxidation of glycerol[J]. Anal. Chem., 2010, 82(13): 5420-5424.
doi: 10.1021/ac101058t URL
[47] Kwon Y, Hersbach T J P, Koper M T M. Electro-oxidation of glycerol on platinum modified by adatoms: Activity and selectivity effects[J]. Top. Catal., 2014, 57(14): 1272-1276.
doi: 10.1007/s11244-014-0292-6 URL
[48] Roquet L, Belgsir E M, Léger J M, Lamy C. Kinetics and mechanisms of the electrocatalytic oxidation of glycerol as investigated by chromatographic analysis of the reaction products: Potential and pH effects[J]. Electrochim. Acta, 1994, 39(16): 2387-2394.
doi: 10.1016/0013-4686(94)E0190-Y URL
[49] Marchionni A, Bevilacqua M, Bianchini C, Chen Y X, Filippi J, Fornasiero P, Lavacchi A, Miller H, Wang L, Vizza F. Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells[J]. ChemSusChem, 2013, 6(3): 518-528.
doi: 10.1002/cssc.201200866 URL
[50] Liu Y, Yu W, Raciti D, Gracias D H, Wang C. Electrocatalytic oxidation of glycerol on platinum[J]. J. Phys. Chem. C, 2019, 123(1): 426-432.
doi: 10.1021/acs.jpcc.8b08547 URL
[51] Fernández P S, Martins C A, Angelucci C A, Gomes J F, Camara G A, Martins M E, Tremiliosi-Filho G. Evidence for independent glycerol electrooxidation behavior on different ordered domains of polycrystalline platinum[J]. ChemElectroChem, 2015, 2(2): 263-268.
doi: 10.1002/celc.201402291 URL
[52] Liu B, Gao F. Navigating glycerol conversion roadmap and heterogeneous catalyst selection aided by density functional theory: A review[J]. Catalysts, 2018, 8(2): 44.
doi: 10.3390/catal8020044 URL
[53] Liu B, Greeley J. Decomposition pathways of glycerol via C-H, O-H, and C-C bond scission on Pt(111): A density functional theory study[J]. J. Phys. Chem. C, 2011, 115(40): 19702-19709.
doi: 10.1021/jp202923w URL
[54] Liu B, Greeley J. A density functional theory analysis of trends in glycerol decomposition on close-packed transition metal surfaces[J]. Phys. Chem. Chem. Phys., 2013, 15(17): 6475-6485.
doi: 10.1039/c3cp44088e URL
[55] Liu B, Greeley J. Density functional theory study of selectivity considerations for C-C versus C-O bond scission in glycerol decomposition on Pt(111)[J]. Top. Catal., 2012, 55(5): 280-289.
doi: 10.1007/s11244-012-9806-2 URL
[56] Valter M, Busch M, Wickman B, Grönbeck H, Baltrusaitis J, Hellman A. Electrooxidation of glycerol on gold in acidic medium: A combined experimental and DFT study[J]. J. Phys. Chem. C, 2018, 122(19): 10489-10494.
doi: 10.1021/acs.jpcc.8b02685 URL
[57] Valter M, dos Santos E C, Pettersson L G M, Hellman A. Partial electrooxidation of glycerol on close-packed transition metal surfaces: Insights from first-principles calculations[J]. J. Phys. Chem. C, 2020, 124(33): 17907-17915.
doi: 10.1021/acs.jpcc.0c04002 URL
[58] Hammer B, Nørskov J K. Why gold is the noblest of all the metals[J]. Nature, 1995, 376(6537): 238-240.
doi: 10.1038/376238a0 URL
[59] Hammer B, Nørskov J K. Electronic factors determining the reactivity of metal surfaces[J]. Surf. Sci., 1995, 343(3): 211-220.
doi: 10.1016/0039-6028(96)80007-0 URL
[60] Hammer B, Nørskov J K. Theoretical surface science and catalysis-calculations and concepts[M]//Advances in Ca-talysis, Academic Press, 2000: 71-129.
[61] Nørskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts[J]. Nat. Chem., 2009, 1(1): 37-46.
doi: 10.1038/nchem.121 pmid: 21378799
[62] Kim H J, Choi S M, Green S, Tompsett G A, Lee S H, Huber G W, Kim W B. Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol[J]. Appl. Catal., B, 2011, 101(3): 366-375.
doi: 10.1016/j.apcatb.2010.10.005 URL
[63] Gomes J F, Martins C A, Giz M J, Tremiliosi-Filho G, Camara G A. Insights into the adsorption and electro-oxidation of glycerol: Self-inhibition and concentration effects[J]. J. Catal., 2013, 301: 154-161.
doi: 10.1016/j.jcat.2013.02.007 URL
[64] González-Cobos J, Baranton S, Coutanceau C. Development of bismuth-modified PtPd nanocatalysts for the electrochemical reforming of polyols into hydrogen and value-added chemicals[J]. ChemElectroChem, 2016, 3(10): 1694-1704.
doi: 10.1002/celc.v3.10 URL
[65] Wang C Y, Yu Z Y, Li G, Song Q T, Li G, Luo C X, Yin S H, Lu B A, Xiao C, Xu B B, Zhou Z Y, Tian N, Sun S G. Intermetallic PtBi nanoplates with high catalytic activity towards electro-oxidation of formic acid and glycerol[J]. ChemElectroChem, 2020, 7(1): 239-245.
doi: 10.1002/celc.v7.1 URL
[66] Kouamé B S R, Baranton S, Brault P, Canaff C, Chamorro-Coral W, Caillard A, De Oliveira Vigier K, Coutanceau C. Insights on the unique electro-catalytic behavior of PtBi/C materials[J]. Electrochim. Acta, 2020, 329: 135161.
doi: 10.1016/j.electacta.2019.135161 URL
[67] González-Cobos J, Baranton S, Coutanceau C. A systematicin situ infrared study of the electrooxidation of C3 alcohols on carbon-supported Pt and Pt-Bi catalysts[J]. J. Phys. Chem. C, 2016, 120(13): 7155-7164.
doi: 10.1021/acs.jpcc.6b00295 URL
[68] Falase A, Main M, Garcia K, Serov A, Lau C, Atanassov P. Electrooxidation of ethylene glycol and glycerol by platinum-based binary and ternary nano-structured catalysts[J]. Electrochim. Acta, 2012, 66: 295-301.
doi: 10.1016/j.electacta.2012.01.096 URL
[69] Kim Y, Kim H W, Lee S, Han J, Lee D, Kim J R, Kim T W, Kim C U, Jeong S Y, Chae H J, Kim B S, Chang H, Kim W B, Choi S M, Kim H J. The role of ruthenium on carbon-supported PtRu catalysts for electrocatalytic glycerol oxidation under acidic conditions[J]. ChemCatChem, 2017, 9(9): 1683-1690.
doi: 10.1002/cctc.v9.9 URL
[70] Tam B, Duca M, Wang A, Fan M, Garbarino S, Guay D. Promotion of glycerol oxidation by selective Ru decoration of (100) domains at nanostructured Pt electrodes[J]. ChemElectroChem, 2019, 6(6): 1784-1793.
doi: 10.1002/celc.v6.6 URL
[71] Zhou Y F, Shen Y, Piao J H. Sustainable conversion of glycerol into value-added chemicals by selective electro-oxidation on Pt-based catalysts[J]. ChemElectroChem, 2018, 5(13): 1636-1643.
doi: 10.1002/celc.v5.13 URL
[72] Alencar L M, Martins C A. Decorating Pt/C nanoparticles with Ru by wall-jet configuration: The role of coverage degree on the catalyst activity for glycerol electrooxidation[J]. Electroanalysis, 2018, 30(9): 2167-2175.
doi: 10.1002/elan.v30.9 URL
[73] Kim H J, Choi S M, Seo M H, Green S, Huber G W, Kim W B. Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst[J]. Electrochem. Commun., 2011, 13(8): 890-893.
doi: 10.1016/j.elecom.2011.05.031 URL
[74] Palma L M, Almeida T S, Morais C, Napporn T W, Kokoh K B, de Andrade A R. Effect of co-catalyst on the selective electrooxidation of glycerol over ruthenium-based nanomaterials[J]. ChemElectroChem, 2017, 4(1): 39-45.
doi: 10.1002/celc.201600406 URL
[75] Zakaria K, McKay M, Thimmappa R, Hasan M, Mamlouk M, Scott K. Direct glycerol fuel cells: Comparison with direct methanol and ethanol fuel cells[J]. ChemEle-ctroChem, 2019, 6(9): 2578-2585.[76] Da Silva R G, Aquino Neto S, Kokoh K B, De Andrade A R. Electroconversion of glycerol in alkaline medium: From generation of energy to formation of value-added products[J]. J. Power Sources, 2017, 351: 174-182.
doi: 10.1016/j.jpowsour.2017.03.101 URL
[77] Bhunia K, Khilari S, Pradhan D. Monodispersed PtPdNi trimetallic nanoparticles-integrated reduced graphene oxide hybrid platform for direct alcohol fuel cell[J]. ACS Sustain. Chem. Eng., 2018, 6(6): 7769-7778.
doi: 10.1021/acssuschemeng.8b00721 URL
[78] Lee S, Kim H J, Choi S M, Seo M H, Kim W B. The promotional effect of Ni on bimetallic PtNi/C catalysts for glycerol electrooxidation[J]. Appl. Catal., A, 2012, 429-430: 39-47.
[79] Zhang N, Zhu Y M, Shao Q, Zhu X, Huang X Q. Ternary PtNi/PtxPb/Pt core/multishell nanowires as efficient and stable electrocatalysts for fuel cell reactions[J]. J. Mater. Chem. A, 2017, 5(36): 18977-18983.
doi: 10.1039/C7TA05130A URL
[80] Kim Y, Kim H, Kim W B. PtAg nanotubes for electrooxidation of ethylene glycol and glycerol in alkaline media[J]. Electrochem. Commun., 2014, 46: 36-39.
doi: 10.1016/j.elecom.2014.06.007 URL
[81] Zhou Y F, Shen Y, Xi J Y, Luo X L. Selective electro-oxidation of glycerol to dihydroxyacetone by PtAg skeletons[J]. ACS Appl. Mater. Interfaces, 2019, 11(32): 28953-28959.
doi: 10.1021/acsami.9b09431 URL
[82] Garcia A C, Ferreira E B, Silva de Barros V V, Linares J J, Tremiliosi-Filho G. PtAg/MnOx/C as a promising electrocatalyst for glycerol electro-oxidation in alkaline medium[J]. J. Electroanal. Chem., 2017, 793: 188-196.
doi: 10.1016/j.jelechem.2016.11.053 URL
[83] Zhou Y F, Shen Y, Xi J Y. Seed-mediated synjournal of PtxAuy@Ag electrocatalysts for the selective oxidation of glycerol[J]. Appl. Catal. B, 2019, 245: 604-612.
doi: 10.1016/j.apcatb.2019.01.009 URL
[84] Rezaei B, Saeidi-Boroujeni S, Havakeshian E, Ensafi A A. Highly efficient electrocatalytic oxidation of glycerol by Pt-Pd/Cu trimetallic nanostructure electrocatalyst supported on nanoporous stainless steel electrode using g
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons