•  
  •  
 

Corresponding Author

Fang-Zu Yang(fzyang@xmu.edu.cn);
Shi-Gang Sun(sgsun@xmu.edu.cn)

Abstract

Printed circuit boards (PCBs) are almost the core components of all electronic systems. With the rapid development of sciences and technologies, PCBs are gradually developing in the direction of multi-layer, thin and high-density wiring due to the functionalization, miniaturization, lightweight and high reliability of electronic products, as well as the widespread popularization of the subminiature package such as chip scale package (CSP) and ball grid array (BGA). Therefore, High-density interconnected printed circuit boards (HDI-PCBs) arise. Hole metallization is one of the core technologies in HDI-PCBs and includes two processes composed of conductive treatment and electron electroplating. Electroless copper plating, as one of the conductive treatment methods, not only can deposit a copper layer with excellent conductivity and adhesion, but also has more reliable process maturity. However, reducing agent formaldehyde harms human health and environment. As a relatively eco-friendly and cheap reducing agent, hypophosphite is expected to replace formaldehyde in the process of the electroless copper plating if the copper deposition rate and the coating quality can be improved. Electron copper electroplating is closely related to the electrical properties of the electronic products. With the increase of PCBs integration, the diameters of holes decrease and the aspect ratios increase, which makes blind microvia and through hole more difficult to realize the superfilling and conformal thickening, respectively. For the superfilling of blind microvia, there are some mature models. But for the conformal thickening of through hole, there is no applicable theoretical guidance, and therefore, more studies are needed. It is very important to find suitable and novel additives besides the improvement of plating conditions for electron copper electroplating. In acidic sulfate copper electron electroplating process, although there are lots of studies on the additives, the interaction mechanism of the additives still needs to be further revealed, which not only contributes to understand the molecular mechanism of various additives, but also provides theoretical basis and guidance for the design and development of novel and efficient additives. In addition, the research and development of weakly alkaline and neutral electron copper electroplating process are also important for hole metallization of HDI-PCB. This paper firstly describes the concept of HDI-PCB, and then reviews recent studies and progresses on the electroless copper plating and acidic sulfate copper electron electroplating processes, which involves the effects of bath composition and operating conditions, the interactive mechanism of additives, and the filling and thickening mechanisms of the holes. Finally, the future directions towards basic research and novel electron electroplating development are highlighted.

Graphical Abstract

Keywords

printed circuit board, hole metallization, electroless plating, electron electroplating, additives

Publication Date

2021-06-28

Online Available Date

2021-03-02

Revised Date

2021-02-23

Received Date

2020-11-30

References

[1] Jones T D A, Bernassau A, Flynn D, Price D, Beadel M, Desmulliez M P Y. Copper electroplating of PCB interconnects using megasonic acoustic streaming[J]. Ultrason. Sonochem., 2018, 42: 434-444.
doi: 10.1016/j.ultsonch.2017.12.004 URL

[2] Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-24.

[3] Zhang J (张佳). Application research on plating throwing power for printed circuit boards base on minitab software[D]. Chengdu: University of Electronic Science and Technology(电子科技大学), 2014.

[4] Takagi K, Honma H, Sasabe, T. Development of sequential build-up multilayer printed wiring boards in Japan[J]. IEEE Electr. Insul. Mag., 2003, 19(5): 27-56.
doi: 10.1109/MEI.2003.1238715 URL

[5] Blackshear E. D, Cases M, Klink E, Engle S R, Malfatt R S, Araujo D N D, Oggioni S, Lacroix L D, Wakil J A, Hougham G G. The evolution of build-up package technology and its design challenges[J]. IBM J. Res. Dev., 2005, 49(4): 641-661.
doi: 10.1147/rd.494.0641 URL

[6] Long F M (龙发明). Study on technique of blind/buried via in HDI rigid-flex PCB[D]. Chengdu: University of Electronic Science and Technology(电子科技大学), 2011.

[7] Ji L X (冀林仙). Investiagtion of copper electrodeposition for printed-circuit interconnection based on multiphysics coupling method[D]. Chengdu: University of Electronic Science and Technology(电子科技大学), 2016.

[8] Tian M B (田民波), Lin J D (林金堵), Zhu D T (祝大同). Substrates for high density package[M]. Beijing: Tsinghua University Press, 2003: 665-680.

[9] Tian M B (田民波), Lin J D (林金堵), Zhu D T (祝大同). Substrates for high density package[M]. Beijing: Tsinghua University Press, 2003: 629.

[10] Tian M B (田民波), Lin J D (林金堵), Zhu D T (祝大同). Substrates for high density package[M]. Beijing: Tsinghua University Press, 2003: 18-21.

[11] Huang Y X (黄雨新). Key technology and application of laser formed blind via in HDI printed circuit board[D]. Chengdu: University of Electronic Science and Technology(电子科技大学), 2013.

[12] He J (何杰). Key technology and application of making plug holes and HDI printed circuit board[D]. Chengdu: University of Electronic Science and Technology(电子科技大学), 2014.

[13] Zhang Z (张正), Li X Q (李孝琼), Gao S (高四), Su L F (苏良飞). Comparison of electroless thick copper plating, organic conductive films and black hole[J]. Printed Circuit Info.(印制电路信息), 2015, 23(4): 23-25.

[14] Fang J L (方景礼), Chen W Y (陈伟元). Isothermal curing kinetics of epoxy resin and its application in copper clad laminate[J]. Printed Circuit Info.(印制电路信息), 2019, 27(4): 33-39.

[15] Li J J, Zhou G Y, Jin X F, Hong Y, He W, Wang S X, Chen Y M, Yang W J, Su X H. Direct activation of copper electroplating on conductive composite of polythiophene surface-coated with nickel nanoparticles[J]. Compos. Pt. B - Eng., 2018, 154: 257-262.
doi: 10.1016/j.compositesb.2018.08.019 URL

[16] Yu F B (余凤斌), Feng L M (冯立明), Xia X H (夏祥华), Geng Q J (耿秋菊). Study on hole metallization of flexible printed circuit board[J]. Electroplating Finishing(电镀与涂饰), 2009, 28(1): 30-32.

[17] Yang F Z (杨防祖), Wu W G (吴伟刚), Tian Z Q (田中群), Zhou S M (周绍民). Technology improvement for porous metallization of printed circuit board[J]. Plating and Finishing(电镀与精饰), 2012, 34(8): 30-33.

[18] Huang S M, Liu C W, Dow W P. Effect of convection-dependent adsorption of additives on microvia filling in an acidic copper plating solution[J]. J. Electrochem. Soc., 2012, 159(3): 135-141.

[19] Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-25.

[20] Wang X W (王秀文), Jang H Y (姜洪艳), Liu Z J (刘志鹃), Wang Z (王增林). A study on potassium permanga-nate solution roughening epoxy resin boards[J]. Plating & Finishing(电镀与精饰), 2006, 28(6): 9-13.

[21] Zhang D L (张道礼), Gong S P (龚树萍), Zhou D X (周东祥). Speciation in electroless copper solutions and roles of complexing agents[J]. Mater. Prot.(材料保护), 200, 33(4): 3-4.

[22] Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 2-6.

[23] Takashi K, Isamu M, Hideomi T, Hideo H. Adhesion between flat copper surfaces and epoxy insulation resin without roughening[J]. Journal of the Surface Finishing Society of Japan, 1999, 50(1): 101-102.
doi: 10.4139/sfj.50.101 URL

[24] Seo J W, Nam H S, Lee S, Won Y S. Prevention of blister formation in electrolessly deposited copper film on organic substrates[J]. Korean J. Chem. Eng., 2012, 29(4): 529-533.
doi: 10.1007/s11814-011-0208-0 URL

[25] Shipley C R, Shipley L H, Gulla M, Dutkewych O B. Electroless copper plating: United States, US3615733[P], 1971-10-26.

[26] Simon B, Laura K P, Bruce M, Alaaedeen A, Frank B, Ralf B. The effect of nickel on the strain evolution in chemical copper films[J]. Thin Solid Films, 2012, 520(23): 6935-6941.
doi: 10.1016/j.tsf.2012.07.039 URL

[27] Li L S, Li X R, Zhao W X, Ma Q, Lu X B, Wang Z L. A study of low temperature and low stress electroless copper plating bath[J]. Int. J. Electrochem. Sci., 2013, 8(4): 5191-5202.

[28] Shen D D (申丹丹), Yang F Z (杨防祖), Wu H H (吴辉煌). Effect of 2,2′-dipyridyl and K4Fe(CN)6 on electroless copper plating using glyoxylic acid as reducing agent [J]. J. Electrochem.(电化学), 2007, 13(1): 67-71.

[29] Yosi S D. Electroless Copper deposition using glyoxylic acid as reducing agent for ultralarge scale integration metallization[J]. Cheminform., 2010, 31(6): 279-282.

[30] Kim Y S, Kim H I, Cho J H, Seo H K, Dar M A, Shin H S, Ten E G A, Lu T M, Senkevich J J. Electroless copper on refractory and noble metal substrates with an ultra-thin plasma-assisted atomic layer deposited palladium layer[J]. Electrochim. Acta, 2006, 51(12): 2400-2406.
doi: 10.1016/j.electacta.2005.07.018 URL

[31] Honma H, Kobayashi T. Electroless copper deposition process using glyoxylic acid as a reducing agent[J]. J. Electrochem. Soc., 1994, 141(3): 730-733.
doi: 10.1149/1.2054800 URL

[32] Yang F Z (杨防祖), Yao G H (姚光华), Zhou S M (周绍民). An electroless copper plating process using glyoxylate as reductant[J]. Plating & Finishing(电镀与精饰), 2012, 34(3): 1-5.

[33] Wu L Q (吴丽琼), Yang F Z (杨防祖), Huang L (黄令), Sun S G (孙世刚), Zhou S M (周绍民). An electrochemical study of electoless copper plating using Glyoxylic acid as reducing agent[J]. J. Electrochem.(电化学), 2005, 11(4): 402-406.

[34] Gao Y L (高彦磊), Bai H J (白红军), Yin L (殷列), Liu Z H (刘宗怀), Yang Z P (杨祖培), Wang Z L (王增林). Latest progress of electroless copper deposition[J]. Electroplating Finishing(电镀与涂饰), 2008, 27(5): 22-25.

[35] Kukanskis P E, Grunwald J J, Ferrier D R, Sawoska D A. Electroless copper composition solution using a hypophosphite reducing agent: United States, US4209331[P]. 1980-06-24.

[36] Hung A, Chen K M. Mechanism of hypophosphite-reduced electroless copper plating[J]. J. Electrochem Soc, 1989, 136(1): 72-75.
doi: 10.1149/1.2096617 URL

[37] Li J, Kohl P A. The acceleration of nonformaldehyde electroless copper plating[J]. J. Electrochem. Soc., 2002, 149(12): 631-636.

[38] Li J, Hayden H, Kohl P A. The influence of 2,2-dipyridyl on non-formaldehyde electroless copper plating[J]. Electrochim. Acta, 2004, 49(11): 1789-1795.
doi: 10.1016/j.electacta.2003.12.010 URL

[39] Gan X P, Wu Y T, Liu Lei, Hu W B. Effects of K4Fe(CN)6 on electroless copper plating using hypophosphite as reducing agent[J]. J. Appl. Electrochem., 2007, 37(8): 899-904.
doi: 10.1007/s10800-007-9327-z URL

[40] Yang F Z (杨防祖), Yang B (杨斌), Huang L (黄令), Xu S K (许书楷), Yao G H (姚光华), Zhou S M (周绍民). Comparison between the electroless copper plating process using sodium hypophosphite and formaldehyde as reductants[J]. Plating & Finishing(电镀与精饰), 2008, 30(8): 12-15.

[41] Sone M, Kobayakawa K, Saitou M, Sato Y. Electroless copper plating using FeII as a reducing agent[J]. Electrochim. Acta, 2004, 49(2): 233-238.
doi: 10.1016/j.electacta.2003.07.004 URL

[42] Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-30.

[43] Reid J. Copper electrodeposition: principles and recent progress[J]. Jpn. J. Appl. Phys., 2001, 40(4B): 2650-2657.
doi: 10.1143/JJAP.40.2650 URL

[44] Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-33.

[45] Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-12.

[46] Wang S N (王劭南), Wang Z L (王增林). Effect of different additives on the uniform deposition of through-hole by pulse electroplating in acidic copper plating bath[J]. Plating & Finishing(电镀与精饰), 2008, 30(12): 24-28.

[47] Wang Z X, Wang S, Yang Z, Wang Z L. Influence of additives and pulse parameters on uniformity of through-hole copper plating[J]. Trans. Inst. Metal Finish., 2013, 88(5): 272-276.
doi: 10.1179/002029610X12791981507884 URL

[48] Shao W, Pattanaik G, Zangari G. Influence of chloride anions on the mechanism of copper electrodeposition from acidic sulfate electrolytes[J]. J. Electrochem. Soc., 2007, 154(4): 201-207.

[49] Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-5.

[50] Schmidt R, Gaida J. Cuprous ion mass transport limitations during copper electrodeposition[J]. ChemElectroChem, 2017, 4(8): 1849-1851.
doi: 10.1002/celc.v4.8 URL

[51] Dow W P, Huang H S. Roles of chloride ion in microvia filling by copper electrodeposition[J]. J. Electrochem. Soc., 2005, 152(2): C67-C76.
doi: 10.1149/1.1849934 URL

[52] Nagy Z, Blaudeau J P, Hung N C, Curtiss L A, Zurawski D J. Chloride-ion catalysis of copper deposition reaction[J]. J. Electrochem. Soc., 1995, 142(6): L87-L89.
doi: 10.1149/1.2044254 URL

[53] Soares D M, Wasle S, Weil K G, Doblhofer K. Copper ion reduction catalyzed by chloride ions[J]. J. Electroanal. Chem., 2002, 532(1-2): 353-358.
doi: 10.1016/S0022-0728(02)01050-1 URL

[54] Keller H, Saracino M, Nguyen H, Broekmann P. Templating the near-surface liquid electrolyte: In situ surface X-ray diffraction study on anion/cation interactions at electrified interfaces[J]. Phys. Rev. B, 2010, 82(24): 1771-1782.

[55] Brown G M, Hope G A. A SERS study of SO2-/C1- ion adsorption at a copper electrodein-situ[J]. J. Electroanal. Chem., 1996, 405(1-2): 211-216.
doi: 10.1016/0022-0728(95)04400-0 URL

[56] Peng J (彭佳), Cheng J (程骄), Wang C (王翀), Xiao D J (肖定军), He W (何为). Research progress of the interactions among the additives of copper electroplating in PCB manufacturing[J]. Plating & Finishing(电镀与精饰), 2016, 38(12): 15-22.

[57] Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-7.

[58] Dow W P, Huang H S, Yen M Y, Chen H H. Roles of chloride ion in microvia filling by copper electrodeposition[J]. J. Electrochem. Soc., 2005, 152(2): C77-C88.
doi: 10.1149/1.1849935 URL

[59] Tan M, Guymon C, Wheeler D, Harb J N. The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition[J]. J. Electrochem. Soc., 2007, 154(2): 78-81.

[60] Dow W P, Chiu Y D, Yen M Y. Microvia filling by Cu electroplating over a Au seed layer modified by a disulfide[J]. J. Electrochem. Soc., 2009, 156(4): 155-167.

[61] Tu H L, Yen P Y, Wu H L, Chen S, Vogel W, Yau S L, Dow W P. In situ STM of 3-mercaptopropanesulfonate adsorbed on Pt(111) electrode and its effect on the electrodeposition of copper[J]. J. Electrochem. Soc., 2010, 157(4): 206-210.

[62] Hai N T M, Huynh T, Fluegel A, Arnold M, Mayer D, Reckien W, Bredow T, Broekmann P. Competitive anion/anion interactions on copper surfaces relevant for Damascene electroplating[J]. Electrochim. Acta, 2012, 70: 286-295.
doi: 10.1016/j.electacta.2012.03.054 URL

[63] Hai N T M, Furrer J, Gjuroski I, Bircher M P, Cascella M, Broekmann P. On the acceleration of Cu electrodeposition by TBPS (3,3-thiobis-1-propanesulfonic acid): A combined electrochemical, STM, NMR, ESI-MS and DFT study[J]. J. Electrochem. Soc., 2013, 160(12): D3158-D3164.
doi: 10.1149/2.030312jes URL

[64] Xiao N (肖宁). Study on microvia filling performances and action mechanisms of EPE inhibitors in copper electroplating process[D]. Harbin: Harbin Institute of Technology(哈尔滨工业大学), 2013.

[65] Yin L, Liu Z H, Yang Z P, Wang Z L, Shingubara S. Effect of PEG molecular weight on bottom-up filling of copper electrodeposition for PCB interconnects[J]. Trans. Inst. Metal Finish., 2010, 88(3): 149-153.
doi: 10.1179/174591910X12692711390390 URL

[66] Gallaway J, Willey M, West A. Copper filling of 100 nm trenches using PEG, PPG, and a triblock copolymer as plating suppressors[J]. J. Electrochem. Soc., 2009, 156(8): 287-295.

[67] Willey M, Mclnerney E. Adsorption and desorption kinetics of a block copolymer wetting agent used in copper electroplating[J]. J. Electrochem. Soc., 2009, 156(3): 98-103.

[68] Ren S, Lei Z, Wang Z. Investigation of suppressor polyethylene glycol dodecyl ether on electroplated Cu filling by electrochemical method[J]. Trans. Inst. Metal Finish., 2015, 93(4): 190-195.
doi: 10.1179/0020296715Z.000000000251 URL

[69] Lu X B, Yao L J, Ren S J, Wang Z L. A study of bottom-up electroplated copper filling by the potential difference between two rotating speeds of a working electrode[J]. J. Electroanal. Chem., 2014, 712: 25-32.
doi: 10.1016/j.jelechem.2013.07.016 URL

[70] Kelly J J, West A C. Copper deposition in the presence of polyethylene glycol I. Quartz crystal microbalance study[J]. J. Electrochem. Soc., 1998, 145(10): 3472-3476.
doi: 10.1149/1.1838829 URL

[71] Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: A surface-enhanced Raman study[J]. J. Phys. Chem. B, 2003, 107(35): 9415-9423.
doi: 10.1021/jp034875m URL

<

[72] Bozzini B, Mele C, D’Urzo L, Romanello V. An electrochemical and in situ SERS study of Cu electrodeposition from acidic sulphate solutions in the presence of 3-diethylamino-7-(4-dimethylaminophenylazo)-5-phenylphen-azi-nium chloride (Janus Green B)[J]. J. Appl. Electrochem., 2006, 36(9): 973-981.
doi: 10.1007/s10800-006-9124-0 URL

[73] Lai Z Q, Wang S X, Wang C, Hong Y, Zhou G Y, Chen Y M, He W, Peng Y Q, Xiao D J. A comparison of typical additives for copper electroplating based on theoretical computation[J]. Comput. Mater. Sci., 2018, 147: 95-102.
doi: 10.1016/j.commatsci.2017.11.049 URL

[74] Li Y B, Wang W, Li Y L. Adsorption behavior and related mechanism of Janus Green B during copper Via-Filling process[J]. J. Electrochem. Soc., 2009, 156(4): 119-124.

[75] Dow W P, Huang H S, Yen M Y, Huang H C. Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating[J]. J. Electrochem. Soc., 2005, 152(6): 425-434.

[76] Lai Z Q, Wang S X, Wang C, Hong Y, Chen Y M, Zhang H W, Zhou G Y, He W, Ai K, Peng Y Q. Computational analysis and experimental evidence of two typical levelers for acid copper electroplating[J]. Electrochim. Acta, 2018, 273: 318-326.
doi: 10.1016/j.electacta.2018.04.062 URL

[77] Lei Z W, Chen L, Wang W L, Wang Z L, Zhao C. Tetrazole derived levelers for filling electroplated Cu microvias: electrochemical behaviors and quantum calculations[J]. Electrochim. Acta, 2015, 178: 546-554.
doi: 10.1016/j.electacta.2015.08.037 URL

[78] Chang C, Lu X B, Lei Z W, Wang Z L, Zhao C. 2-Mercaptopyridine as a new leveler for bottom-up filling of micro-vias in copper electroplating[J]. Electrochim. Acta, 2016, 208: 33-38.
doi: 10.1016/j.electacta.2016.04.177 URL

[79] Wang X, Zhang S T, Chen S J, Tan B C, Guo H L, Wang Y, Qiang Y J, Fu S L, Wen Y N. Effects of 2,2-Dithiodi-pyridine as a leveler for through-holes filling by copper electroplating[J]. J. Electrochem. Soc., 2019, 166(13): D660-D668.
doi: 10.1149/2.0461913jes

[80] Ren S J, Lei Z W, Wang Z L. Investigation of nitrogen heterocyclic compounds as levelers for electroplating Cu filling by electrochemical method and quantum chemical calculation[J]. J. Electrochem. Soc., 2015, 162(10): D509-D514.
doi: 10.1149/2.0281510jes URL

[81] Zheng L, He W, Zhu K, Wang C, Wang S X, Hong Y, Chen Y M, Zhou G Y, Miao H, Zhou J Q. Investigation of poly(1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochim. Acta, 2018, 283: 560-567.
doi: 10.1016/j.electacta.2018.06.132 URL

[82] Lv J G, Zhao X H, Jie X, Li J, Wei X C, Chen B, Hong G, Wu W J, Wang L M. Fatty acid quaternary ammonium surfactants based on renewable resources as a leveler for copper electroplating[J]. Chemelectrochem, 2019, 6(13): 3254-3263.
doi: 10.1002/celc.v6.13 URL

[83] Li J, Zhou G Y, Hong Y, Wang C, He W, Wang S X, Chen Y M, Wen Z S, Wang Q Y. Copolymer of pyrrole and 1,4-butanediol diglycidyl as an efficient additive leveler for through-hole copper electroplating[J]. ACS Omega, 2020, 5(10): 4868-4874.
doi: 10.1021/acsomega.9b03691 URL

[84] Wang X M, Wang K, Xu J, Li J, Lv J G, Zhao M, Wang L M. Quinacridone skeleton as a promising efficient leveler for smooth and conformal copper electrodeposition[J]. Dyes Pigment., 2020, 181(10): 108594.
doi: 10.1016/j.dyepig.2020.108594 URL

[85] Chen B, Wang A Y, Wu S Y, Wang L M. Polyquaternium-2: A new levelling agent for copper electroplating from acidic sulphate bath[J]. Electrochemistry, 2016, 84(6): 414-419.
doi: 10.5796/electrochemistry.84.414 URL

[86] Hai N T M, Kramer K W, Fluegel A, Arnold M, Mayer D, Broekmann P. Beyond interfacial anion/cation pairing: The role of Cu(I) coordination chemistry in additive-controlled copper plating[J]. Electrochim. Acta, 2012, 83: 367-375.
doi: 10.1016/j.electacta.2012.07.036 URL

[87] Andricacos P C, Uzoh C, Dukovic J O, Horkans J, Deligianni H. Damascene copper electroplating for chip interconnections[J]. IBM J. Res. Dev., 1998, 42(5): 567-574.
doi: 10.1147/rd.425.0567 URL

[88] West A C, Mayer S, Reid J. A superfilling model that predicts bump formation[J]. Electrochem. Solid State Lett., 2001, 4(7): C50-C53.
doi: 10.1149/1.1375856 URL

[89] Moffat T P, Wheeler D, Kim S K, Josell D. Curvature enhanced adsorbate coverage mechanism for bottom-up superfilling and bump control in damascene processing[J]. Electrochim. Acta, 2007, 53(1): 145-154.
doi: 10.1016/j.electacta.2007.03.025 URL

[90] Akolkar R, Landau U. Mechanistic analysis of the “bottom-up” fill in copper interconnect metallization[J]. J. Ele-ctrochem. Soc., 2009, 156(9): D351-D358.

[91] Dow W P (窦维平). Applications of microvia and through-hole filling by copper electroplating[J]. J.Fudan Univ.(Nat. Sci.), 2012, 51(2): 131-138.

[92] Dow W P, Yen M Y, Liao S Z, Chiu Y D, Huang H C. Filling mechanism in microvia metallization by copper electroplating[J]. Electrochim. Acta, 2008, 53(28): 8228-8237.
doi: 10.1016/j.electacta.2008.06.042 URL

[93] Ji L X, Wang S X, Wang C, Chen G Q, Chen Y M, He W, Tan Z. Improved uniformity of conformal through-hole copper electrodeposition by revision of plating cell configuration[J]. J. Electrochem. Soc., 2015, 162(12): D575-D583.
doi: 10.1149/2.0761512jes URL

[94] Xiang J, Wang S X, Li J, He W, Wang C, Chen Y M, Zhang H W, Miao H, Zhou J Q, Jin X F. Electrochemical factors of levelers on plating uniformity of through-holes: Simulation and Experiments[J]. J. Electrochem. Soc., 2018, 165(9): E359-D365.
doi: 10.1149/2.0331809jes URL

[95] Xiang J, Wang C, Chen Y M, Xia F, He W, Mao H, Zhou J Q, Chen Q G, Jin X F. Numerical simulation and experiments to improve throwing power for practical PCB through-holes plating[J]. Circuit World, 2019, 45(4): 221-230.
doi: 10.1108/CW-05-2018-0033

[96] Yang F Z (杨防祖), Wu W G (吴伟刚), Jiang Y F (蒋义峰), Tian Z Q (田中群), Yao S B (姚士冰), Xu S K (许书楷), Chen B Y (陈秉彝), Zhou S M (周绍民). Alkaline cyanogen-free copper plating liquid for steel substrate and preparation method: China, CN101665962A[P]. 2010-03-10.

[97] Yang F Z (杨防祖), Jiang Y F (吴伟刚), Wu D Y (吴德印), Tian Z Q (田中群), Zhou S M (周绍民). Alkaline cyanide-free copper-plated anode dissolving accelerator: China, CN103014789A[P]. 2013-04-03.

[98] Yang F Z (杨防祖), Wu W G (吴伟刚), Lin Z P (林志萍), Huang L (黄令), Zhou S M (周绍民). Non-cyanide copper plating on steel substrate in alkaline citrate bath[J]. Electroplating Finishing(电镀与涂饰), 2009, 28(6): 1-4.

[99] Yang F Z (杨防祖), Song W B (宋维宝), Huang L (黄令), Yao G H (姚光华), Zhou S M (周绍民). Non-cyanide copper plating on steel substrate in alkaline tartrate bath[J]. Plating and Finishing(电镀与精饰), 2009, 31(6): 1-4.

[100] Yang F Z (杨防祖), Yu Y Y (余嫄嫄), Huang L (黄令), Yao G H (姚光华), Zhou S M (周绍民). Cyanide-free copper electroplating in sulfite/thiosulfate bath[J]. Electroplating Finishing(电镀与涂饰), 2009, 28(3): 1-3,9.

[101] Yang F Z (杨防祖), Zhao Y (赵媛), Tian Z Q (田中群), Zhou S M (周绍民). Process of alkaline cyanide-free copper electroplating on zinc-based alloy in citrate-tartrate complex system[J]. Electroplating Finishing(电镀与涂饰), 2010, 29(11): 4-7.

[102] Jiang Y F (蒋义峰), Chen M H (陈明辉), Yang F Z (杨防祖), Tian Z Q (田中群), Zhou S M (周绍民). Novel process of cyanide-free copper plating on steel and its application[J]. Electroplating Finishing(电镀与涂饰), 2012, 31(8): 7-10.

[103] Yang F Z (杨防祖), Wu W G (吴伟刚), Tian Z Q (田中群), Zhou S M (周绍民). Application of copper electrochemical deposition for the metallization of micropores[J]. Acta Phys. -Chim. Sin(物理化学学报), 2011, 27(9): 2135-2140.

[104] Wu W G (吴伟刚), Yang F Z (杨防祖), Luo M H (骆明辉), Tian Z Q (田中群), Zhou S M (周绍民). Electrodeposition of copper in a citrate bath and its application to a micro-electro-mechanical system[J]. Acta Phys. -Chim. Sin(物理化学学报), 2010, 26(10): 2625-2632.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.