Abstract
The slow kinetics of oxygen reduction reaction (ORR) limits the performance of low temperature fuel cells. Thus, it needs to design effective catalysts with low cost. Core-shell clusters (CSNCs) show promising activity because of their size-dependent geometric and electronic effects. The ORR activity trend of Nim@Pt1Aun-m-1(n = 19, 38, 55, 79; m = 1, 6, 13, 19) was studied using the GGA-PBE-PAW methods. The adsorption configurations of *O, *OH and *OOH were optimized and the reaction free energies of four proton electron (H+ + e-) transfer steps were calculated. Using overpotential as a descriptor for the catalytic activity, Ni6@Pt1Au31 was found to be the most active ORR catalyst. Ni1@Pt1Au17, Ni13@Pt1Au41, and Ni19@Pt1Au59 had better activity than pure Pt clusters and Pt(111). Bader charge and DOS data indicate that the single Pt atom embedded on Nim@Aun-m can tune the electronic property of active site, and thus, significantly improve the activity. The present study showed that the single Pt atom embedded on Nim@Aun-m is a rational strategy to design effective core-shell ORR catalysts.
Graphical Abstract
Keywords
core-shell metal clusters, oxygen reduction reaction, density functional theory, overpotential, single atom catalysis
Publication Date
2021-08-28
Online Available Date
2021-06-09
Revised Date
2021-05-08
Received Date
2021-03-27
Recommended Citation
Wen-Jie Li, Dong-Xu Tian, Hong Du, Xi-Qiang Yan.
DFT Study of Nim@Pt1Aun-m-1 (n=19, 38, 55, 79; m = 1, 6, 13, 19) Core-Shell ORR Catalyst[J]. Journal of Electrochemistry,
2021
,
27(4): 357-365.
DOI: The slow kinetics of oxygen reduction reaction (ORR) limits the performance of low temperature fuel cells. Thus, it needs to design effective catalysts with low cost. Core-shell clusters (CSNCs) show promising activity because of their size-dependent geometric and electronic effects. The ORR activity trend of Nim@Pt1Aun-m-1(n = 19, 38, 55, 79; m = 1, 6, 13, 19) was studied using the GGA-PBE-PAW methods. The adsorption configurations of *O, *OH and *OOH were optimized and the reaction free energies of four proton electron (H+ + e-) transfer steps were calculated. Using overpotential as a descriptor for the catalytic activity, Ni6@Pt1Au31 was found to be the most active ORR catalyst. Ni1@Pt1Au17, Ni13@Pt1Au41, and Ni19@Pt1Au59 had better activity than pure Pt clusters and Pt(111). Bader charge and DOS data indicate that the single Pt atom embedded on Nim@Aun-m can tune the electronic property of active site, and thus, significantly improve the activity. The present study showed that the single Pt atom embedded on Nim@Aun-m is a rational strategy to design effective core-shell ORR catalysts.
Available at: https://jelectrochem.xmu.edu.cn/journal/vol27/iss4/1
References
[1]
Antolini E, Passos R R, Ticianelli E A. Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cells[J]. Electrochim. Acta., 2002, 48(3): 263-270.
doi: 10.1016/S0013-4686(02)00644-8
URL
[2]
Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Activity benchmarks for Pt, Pt-alloy and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl. Catal. B - Environ., 2005, 56(1-2): 9-35.
doi: 10.1016/j.apcatb.2004.06.021
URL
[3]
Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51.
doi: 10.1038/nature11115
URL
[4]
Chen J, Lim B, Lee E P, Xia Y. Shape-controlled synjournal of platinum nanocrystals for catalytic and electrocatalytic applications[J]. Nano Today, 2009, 4(1): 81-95.
doi: 10.1016/j.nantod.2008.09.002
URL
[5]
Guo S J, Wang E K. Noble metal nanomaterials: Controllable synjournal and application in fuel cells and analytical sensors[J]. Nano Today, 2011, 6(3): 240-264.
doi: 10.1016/j.nantod.2011.04.007
URL
[6]
Koenigsmann C, Santulli A C, Gong K, Vukmirovic M B, Zhou W P, Sutter E, Wong S S, Adzic R R. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction[J]. J. Am. Chem. Soc., 2011, 133(25): 9783-9795.
doi: 10.1021/ja111130t
URL
[7]
Koenigsmann C, Sutter E, Chiesa T A, Adzic R R, Wong S S. Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nano-wires prepared under ambient, surfactantless conditions[J]. Nano Lett., 2012, 12(4): 2013-2020.
doi: 10.1021/nl300033e
URL
[8]
Sun S H, Zhang G X, Geng D S, Chen Y G, Li R Y, Cai M, Sun X L. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal[J]. Angew. Chem. Int. Ed., 2010, 50(2): 422-426.
doi: 10.1002/anie.201004631
URL
[9]
Yang P. Platinum-based electrocatalysts with core-shell nanostructures[J]. Angew. Chem. Int. Ed., 2011, 50(12): 2674-2676.
doi: 10.1002/anie.v50.12
URL
[10]
Strasser P, Koh S, Anniyev T, Greeley J, Nilsson A. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nature Chem., 2010, 2(6): 454-460.
doi: 10.1038/nchem.623
URL
[11]
Guo S J, Zhang S, Sun S H. Tuning nanoparticle catalysis for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2013, 52(33): 8526-8544.
doi: 10.1002/anie.201207186
URL
[12]
Mani P, Srivastava R, Strasser P. Dealloyed PtCu coreshell nanoparticle electrocatalysts for use in PEM fuel cell cathodes[J]. J. Phys. Chem. C, 2012, 112(7): 2770-2778.
doi: 10.1021/jp0776412
URL
[13]
Wang D L, Xin H L L, Hovden R, Wang H S, Yu Y C, Muller D A, Disalvo F J, Abrua H C. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nat. Mater., 2012, 12(1): 81-87.
doi: 10.1038/nmat3458
URL
[14]
Wang G X, Wu H M, Wexler D, Liu H K, Savadogo O. Ni@Pt core-shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction[J]. J. Alloy. Compd., 2010, 503(1): L1-L4.
doi: 10.1016/j.jallcom.2010.04.236
URL
[15]
Neergat M, Rahul R. Unsupported Cu-Pt core-shell nano-particles: Oxygen reduction reaction (ORR) catalyst with better activity and reduced precious metal content[J]. J. Electrochem. Soc., 2012, 159(7): F234-F241.
doi: 10.1149/2.039207jes
URL
[16]
Jang J H, Lee E, Park J, Kim G, Hong S, Kwon Y U. Rational syntheses of core-shell Fex@Pt nanoparticles for the study of electrocatalytic oxygen reduction reaction[J]. Sci. Rep., 2013, 3: 2872.
doi: 10.1038/srep02872
URL
[17]
Chen Y M, Liang Z X, Yang F, Liu Y W, Chen S L. Ni-Pt core-shell nanoparticles as oxygen reduction electrocatalysts: Effect of Pt shell coverage[J]. J. Phys. Chem. C, 2011, 115(49): 24073-24079.
doi: 10.1021/jp207828n
URL
[18]
Zhang Y F, Qin J, Leng D Y, Liu Q R, Xu X Y, Yang B, Yin F. Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts[J]. J. Power Sources, 2021, 485: 229340.
doi: 10.1016/j.jpowsour.2020.229340
URL
[19]
Park J, Zhang L, Choi S I, Roling L T, Lu N, Herron J A, Xie S F, Wang J G, Kim M J, Mavrikakis M, Xia Y N. Atomic layer-by-layer deposition of platinum on palladium octahedra for enhanced catalysts toward the oxygen reduction reaction[J]. ACS Nano, 2015, 9(3): 2635-2647.
doi: 10.1021/nn506387w
URL
[20]
Zhang L, Iyyamperumal R, Yancey D F, Crooks R M, Henkelman G. Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction[J]. ACS Nano, 2013, 7(10): 9168-9172.
doi: 10.1021/nn403788a
URL
[21]
Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney M F, Nilsson A. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nat. Chem., 2010, 2(6): 454-460.
doi: 10.1038/nchem.623
URL
[22]
Zhang J L, Vukmirovic M B, Sasaki K, Nilekar A U, Ma-vrikakis M, Adzic R R. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics[J]. J. Am. Chem. Soc., 2005, 127(36): 12480-12481.
doi: 10.1021/ja053695i
URL
[23]
Nörskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004, 108(46): 17886-17892.
doi: 10.1021/jp047349j
URL
[24]
Cheng D J, Qiu X G, Yu H Y. Enhancing oxygen reduction reaction activity of Pt-shelled catalysts via subsurface alloying[J]. Phys. Chem. Chem. Phys., 2014, 16(38): 20377-20381.
doi: 10.1039/C4CP02863E
URL
[25]
Wang L L, Johnson D D. Predicted trends of core-shell preferences for 132 late transition-metal binary-alloy nanoparticles[J]. J. Am. Chem. Soc., 2009, 131(39): 14023-14029.
doi: 10.1021/ja903247x
URL
[26]
Shin J, Choi J H, Cha P R, Kim S K, Kim I, Lee S C, Jeong D S. Catalytic activity for oxygen reduction reaction on platinum-based core-shell nanoparticles: All-electron density functional theory[J]. Nanoscale, 2015, 7(38): 15830-15839.
doi: 10.1039/C5NR04706D
URL
[27] Nair A, Pathak B. Computational screening for ORR activity of 3d transition metal based M@Pt core-shell clusters[J]. J. Phys. Chem. C, 2019, 127(6): 3634-3644.
[28]
Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts[J]. Nat. Chem., 2009, 1(7): 552-556.
doi: 10.1038/nchem.367
URL
[29]
Bligaard T, Norskov J K, Dahl S, Matthiesen J, Christensen C H, Sehested J. The Brnsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. J. Catal., 2004, 224(1): 206-217.
doi: 10.1016/j.jcat.2004.02.034
URL
[30]
Sobrinho D G, Nomiyama R K, Chaves A S, Piotrowski M J, Silva J. Structure, electronic, and magnetic properties of binary PtnTM55-n (TM = Fe, Co, Ni, Cu, Zn) nano-clusters: A density functional theory investigation[J]. J. Phys. Chem. C, 2015, 119(27): 15669-15679.
doi: 10.1021/acs.jpcc.5b02242
URL
[31]
Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Phys. Rev. B, 1994, 49(20): 14251-14269.
doi: 10.1103/PhysRevB.49.14251
URL
[32]
Kresse G G, Furthmüller J J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54(16): 11169-11186.
doi: 10.1103/PhysRevB.54.11169
URL
[33]
Perdew J P, Yue W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Phys. Rev. B, 1986, 33(12): 8800-8802.
doi: 10.1103/PhysRevB.33.8800
URL
[34]
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B, 1993, 46(11): 6671-6687.
doi: 10.1103/PhysRevB.46.6671
URL
[35]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3): 1758-1775.
doi: 10.1103/PhysRevB.59.1758
URL
[36]
Teter M P, Payne M C, Allan D C. Solution of Schröding-er’s equation for large systems[J]. Phys. Rev. B, 1989, 40(18): 12255-12263.
doi: 10.1103/PhysRevB.40.12255
URL
[37]
Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections[J]. J. Comput. Chem., 2004, 25(12): 1463-1473.
doi: 10.1002/(ISSN)1096-987X
URL
[38]
Lee K, Murray Amonn D, Kong L, Lundqvist B I, Langreth D C. A higher-accuracy van der waals density functional[J]. Phys. Rev. B, 2010, 82(8): 081101.
doi: 10.1103/PhysRevB.82.081101
URL
[39]
Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density[J]. Comput. Mater. Sci., 2006, 36(3): 354-360.
doi: 10.1016/j.commatsci.2005.04.010
URL
[40]
Grgur B N, Markovi N M, Ross P N. Temperature-dependent oxygen electrochemistry on platinum low-index single crystal surfaces in acid solutions[J]. Can. J. Chem., 1997, 75(11): 1465-1471.
doi: 10.1139/v97-176
URL
[41]
Blizanac B B, Lucas C A, Gallagher M E, Arenz M, Ross P N, Markovic N M. Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: The pH effect[J]. J. Phys. Chem. B, 2004, 108(2): 625-634.
doi: 10.1021/jp036483l
URL
[42]
Wang L, Zeng Z H, Ma C, Liu Y F, Giroux M, Chi M F, Jin J, Greeley J, Wang C. Plating precious metals on nonprecious metal nanoparticles for sustainable electrocatalysts[J]. Nano Lett., 2017, 17(6): 3391-3395.
doi: 10.1021/acs.nanolett.7b00046
URL
[43]
Fang P P, Duan S, Lin X D, Anema J R, Li J F, Buriez O, Ding Y, Fan F R, Wu D Y, Ren B, Wang Z L, Amatore C, Tian Z Q. Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity[J]. Chem. Sci., 2011, 2(3): 531-539.
doi: 10.1039/C0SC00489H
URL
[44]
Dinesh B, Jyh-Pin C, Che Y, Hu A, Yang Y T, Chen T Y. Programming ORR Activity of Ni/NiOx@Pd electrocatalysts via controlling depth of surface-decorated atomic Pt clusters[J]. ACS Omega, 2018, 3(8): 8733-8744.
doi: 10.1021/acsomega.8b01234
URL
[45]
Wang H, An W. Promoting the oxygen reduction reaction with gold at step/edge sites of Ni@AuPt core-shell nano-particles[J]. Catal. Sci. Technol., 2017, 7(3): 596-606.
doi: 10.1039/C6CY02344D
URL
Included in
Catalysis and Reaction Engineering Commons, Computational Chemistry Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons