Abstract
Molybdenum diselenide (MoSe2) is a two-dimensional (2D) transition metal dichalcogenide (TMD) material, attracting wide attention in lithium ion battery (LIB) and exhibiting great potential in next-generation magnesium ion battery (MIB) due to its unique layered structure with fast ion mobility and weak van der Waals interlayer interaction. However, the reported literatures related to MoSe2 mainly focus on the enhancement of performance in LIB without deep storage mechanisms investigations. Meanwhile,the magnesium storage capacity and mechanisms have not been explored. In this work, MoSe2 nanospheres were synthesized via wet chemical route and followed by annealing treatment. When used as the anode and cathode materials, the MoSe2 nanospheres exhibited the excellent high-rate capacity of > 100 mAh·g-1 at 5 A·g-1 for LIB and the excellent reversible discharge capacity of 120 mAh·g-1 at 20 mA·g-1 for MIB, respectively. Furthermore, the conversion-type at low plateau and the lithium-selenium battery reaction-type at high plateau of Li+ storage mechanisms, as well as the pseudocapacitive reaction as the main and intercalation-type reaction as the supplement storage mechanisms of Mg2+ are discussed by electrochemical, in situ and ex situ X-ray diffraction characterizations. This work not only provides the deep understanding of lithium storage mechanism, but also demonstrates the good magnesium storage potential of TMD materials.
Graphical Abstract
Keywords
molybdenum diselenide nanospheres, lithium ion battery, magnesium ion battery, storage mechanism, in or (ex) situ X-ray diffraction
Publication Date
2021-08-28
Online Available Date
2020-07-14
Revised Date
2020-06-12
Received Date
2020-05-11
Recommended Citation
Yi Peng, Wei Zhang, Fang-Zhen Zuo, Hao-Ying Lv, Kai-Jun Hong.
Storage Performance and Mechanism of MoSe2 Nanospheres in Lithium and Magnesium Ion Batteries[J]. Journal of Electrochemistry,
2021
,
27(4): 456-464.
DOI: Molybdenum diselenide (MoSe2) is a two-dimensional (2D) transition metal dichalcogenide (TMD) material, attracting wide attention in lithium ion battery (LIB) and exhibiting great potential in next-generation magnesium ion battery (MIB) due to its unique layered structure with fast ion mobility and weak van der Waals interlayer interaction. However, the reported literatures related to MoSe2 mainly focus on the enhancement of performance in LIB without deep storage mechanisms investigations. Meanwhile,the magnesium storage capacity and mechanisms have not been explored. In this work, MoSe2 nanospheres were synthesized via wet chemical route and followed by annealing treatment. When used as the anode and cathode materials, the MoSe2 nanospheres exhibited the excellent high-rate capacity of > 100 mAh·g-1 at 5 A·g-1 for LIB and the excellent reversible discharge capacity of 120 mAh·g-1 at 20 mA·g-1 for MIB, respectively. Furthermore, the conversion-type at low plateau and the lithium-selenium battery reaction-type at high plateau of Li+ storage mechanisms, as well as the pseudocapacitive reaction as the main and intercalation-type reaction as the supplement storage mechanisms of Mg2+ are discussed by electrochemical, in situ and ex situ X-ray diffraction characterizations. This work not only provides the deep understanding of lithium storage mechanism, but also demonstrates the good magnesium storage potential of TMD materials.
Available at: https://jelectrochem.xmu.edu.cn/journal/vol27/iss4/12
References
[1] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
doi: 10.1126/science.1212741 URL
[2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
doi: 10.1038/35104644 URL
[3] Ai X P(艾新平), Yang H X(杨汉西). Multi-electron redox materials for high energy density electrodes[J]. J. Electrochem.(电化学), 2011, 17(2): 123-133.
[4] Muldoon J, Bucur C B, Gregory T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond[J]. Chem. Rev., 2014, 114(23): 11683-11720.
doi: 10.1021/cr500049y URL
[5] Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E. Prototype, systems for rechargeable magnesium batteries[J]. Nature, 2000, 407(6805): 724-727.
doi: 10.1038/35037553 URL
[6] Wang F F(王菲菲), Guo Y S(郭永胜), Yang J(杨军), Nuli Y N(努丽燕娜), Wang J L(王久林). Electrochemical characterization of (PhMgCl)2-AlCl3/mixed ether electroly-tes[J]. J. Electrochem.(电化学), 2012, 18(1): 56-61.
[7] Tao Z L, Xu L N, Gou X L, Chen J, Yuan H T. TiS2 nano-tubes as the cathode materials of Mg-ion batteries[J]. Chem. Commun., 2004, 18: 2080-2081.
[8] Liang Y L, Feng R J, Yang S Q, Ma H, Liang J, Chen J. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode[J]. Adv. Mater., 2011, 23(5): 640-643.
doi: 10.1002/adma.201003560 URL
[9] Chao D L, Liu E Z, Jaroniec M, Zhao N Q, Qiao S Z. Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level[J]. Energy Environ. Sci., 13(4): 1096-1131.
doi: 10.1039/C9EE03549D URL
[10] Shi Y F, Hua C X, Li B, Fang X P, Yao C H, Zhang Y C, Hu Y S, Wang Z X, Chen L Q, Zhao D Y, Stucky G D. Highly ordered mesoporous crystalline MoSe2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance[J]. Adv. Funct. Mater., 2013, 23(14): 1832-1838.
doi: 10.1002/adfm.v23.14 URL
[11] Wang H, Wang X Y, Wang L, Wang J, Jiang D L, Li G P, Zhang Y, Zhong H H, Jiang Y. Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery[J]. J. Phys. Chem. C, 2015, 119(19): 10197-10205.
doi: 10.1021/acs.jpcc.5b00353 URL
[12] Morales J, Santos J, Tirado J L. Electrochemical studies of lithium and sodium intercalation in MoSe2[J]. Solid State Ion., 1996, 83(1-2): 57-64.
doi: 10.1016/0167-2738(95)00234-0 URL
[13] Truong Q D, Devaraju M K, Nakayasu Y, Tamura N, Sasaki Y, Tomai T, Honma I. Exfoliated MoS2 and MoSe2 nanosheets by a supercritical fluid process for a hybrid Mg-Li-ion battery[J]. ACS Omega, 2017, 2(5): 2360-2367.
doi: 10.1021/acsomega.7b00379 URL
[14] Tang H, Huang H, Wang X S, Wu K Q, Tang G G, Li C S. Hydrothermal synjournal of 3D hierarchical flower-like MoSe2 microspheres and their adsorption performances for methyl orange[J]. Appl. Surf. Sci., 2016, 379: 296-303.
doi: 10.1016/j.apsusc.2016.04.086 URL
[15] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984)[J]. Pure. Appl. Chem., 1985, 57(4): 603-619.
doi: 10.1351/pac198557040603 URL
[16] Liu Y, Zhu M Q, Chen D. Sheet-like MoSe2/C composites with enhanced Li-ion storage properties[J]. J. Mater. Chem. A, 2015, 3(22): 11857-11862.
doi: 10.1039/C5TA02100F URL
[17] Yang F Y, Ban D Y, Fang R C, Xu S H, Xu P S, Yuan S X. Valence band offset and interface formation of Ge/ZnSe(100) studied by synchrotron radiation photoemission[J]. J. Electron. Spectros. Relat. Phenomena., 1996, 80: 193-196.
doi: 10.1016/0368-2048(96)02954-4 URL
[18] Bao D, Wang Y, Li X B, Wu T T, Chen Y J, Yang P P. Amorphous, crystalline and crystalline/amorphous selenium nanowires and their different (de)lithiation mechanisms[J]. Chem. Mater., 2015, 27(19): 6730-6736.
doi: 10.1021/acs.chemmater.5b02753 URL
[19] Gao J Y, Li Y P, Shi L, Li J J, Zhang G Q. Rational design of hierarchical nanotubes through encapsulating CoSe2 nanoparticles into MoSe2/C composite shells with enhanced lithium and sodium storage performance[J]. ACS Appl. Mater. Interfaces, 2018, 10(24): 20635-20642.
doi: 10.1021/acsami.8b06442 URL
[20] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176): 1210-1211.
doi: 10.1126/science.1249625 URL
[21] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environ. Sci., 2014, 7(5): 1597-1614.
doi: 10.1039/c3ee44164d URL
[22] Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. J. Phys. Chem. C, 2007, 111(40): 14925-14931.
doi: 10.1021/jp074464w URL
[23] Sheng J Z, Peng C, Yan S W, Zhang G B, Jiang Y L, An Q Y, Wei Q L, Ru Q, Mai L Q. New anatase phase VTi2.6O7.2 ultrafine nanocrystals for high-performance rechargeable magnesiumbased batteries[J]. J. Mater. Chem. A, 2018, 6(28): 13901-13907.
doi: 10.1039/C8TA01818A URL
[24] Sheng J Z, Zang H, Tang C J, An Q Y, Wei Q L, Zhang G B, Chen L N, Peng C, Mai L Q. Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries[J]. Nano Energy, 2016, 24: 130-138.
doi: 10.1016/j.nanoen.2016.04.021 URL
[25] Peng C, Lyu H Y, Wu L, Xiong T F, Xiong F Y, Liu Z A, An Q Y, Mai L Q. Lithium- and magnesium-storage mechanisms of novel hexagonal nbSe2[J]. ACS Appl. Mater. Interfaces, 2018, 10(43): 36988-36995.
doi: 10.1021/acsami.8b12662 URL
[26] Zhang Y J, Chen D, Li X, Shen J W, Chen Z X, Cao S A, Li T, Xu F. α-MoS3@CNT nanowire cathode for rechar-geable Mg batteries: a pseudocapacitive approach for efficient Mg-storage[J]. Nanoscale, 2019, 11(34): 16043-16051.
doi: 10.1039/C9NR04280F URL
[27] Fan X Y(樊小勇), Xu J M(许金梅), Zhuang Q C(庄全超), J H H(江宏宏), Huang L(黄令), Jiang Y X(姜艳霞), Dong Q F(董全峰), Sun S G(孙世刚), Composite electroplating and characterizations of Sn-SBA15 anode for lithium-ion batteries[J]. J. Electrochem.(电化学), 2007, 13(1): 25-29.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons