Abstract
As the next generation high-energy batteries, lithium metal battery has attracted more and more attention due to its highest specific capacity (3860 mA·h·g-1) and the lowest anode potential (-3.04 V versus the standard hydrogen electrode, SHE). However, the safety problem caused by lithium dendrite growth is one of the biggest challenges for the commercialization of lithium metal batteries. Single ion conducting polymer electrolytes, which deliver high lithium ion transference number, represent one of the important strategies to inhibit lithium dendrite growth. However, the poor compatibility with electrodes and low ionic conductivity largely limit their practical application. In the present work, the cross-linking pentaerythritol tetraacrylate precursor and AIBN radical initiator was select as an additive in the commercial 1 mol·L-1 LiPF6-EC/PC (v:v = 1:1) electrolyte, and then was added into the high porous single ion conducting polymer electrolyte. The as-prepared single ion conducting polymer electrolyte was used as the polymer electrolyte for assembling lithium metal battery with the LiFePO4 cathode. The three-dimensional semi-interpenetrating network inside the high porous single ion conducting polymer electrolyte was fabricated by thermal-induced in-situ polymerization inside of the battery by putting the battery in an oven at high temperature. The key properties were successfully investigated. The results indicated that the formed three-dimensional semi-interpenetrating network of the single ion conducting polymer electrolyte was great favorable to improve the ionic conductivity and mechanical property of the polymer electrolyte, and subsequently, to effectively inhibit the growth of lithium dendrite. As a result, the ionic conductivity of 0.53 mS·cm-1 at room temperature and lithium ion transference number of 0.65 were successfully obtained through the implementation of this strategy. It is proved that the as-presented electrolyte can effectively inhibit the growth of lithium dendrite and improve the rate performance, which provides a facile solution for the development of lithium metal battery technology.
Graphical Abstract
Keywords
lithium metal battery, polymer electrolyte, lithium ion transference number, lithium dendrite growth, semi-interpenetrated polymer network
Publication Date
2021-08-28
Online Available Date
2020-11-10
Revised Date
2020-10-10
Received Date
2020-09-27
Recommended Citation
Yun-Feng Zhang, Jia-Ying Wang, Xiao-Jie Li, Shi-Yu Zhao, Yang He, Shi-Kang Huo, Ya-Ying Wang, Chang Tan.
Preparation of 3D Semi-Interpenetrated Polymer Networks Polymer Electrolyte for Lithium Metal Battery[J]. Journal of Electrochemistry,
2021
,
27(4): 413-422.
DOI: As the next generation high-energy batteries, lithium metal battery has attracted more and more attention due to its highest specific capacity (3860 mA·h·g-1) and the lowest anode potential (-3.04 V versus the standard hydrogen electrode, SHE). However, the safety problem caused by lithium dendrite growth is one of the biggest challenges for the commercialization of lithium metal batteries. Single ion conducting polymer electrolytes, which deliver high lithium ion transference number, represent one of the important strategies to inhibit lithium dendrite growth. However, the poor compatibility with electrodes and low ionic conductivity largely limit their practical application. In the present work, the cross-linking pentaerythritol tetraacrylate precursor and AIBN radical initiator was select as an additive in the commercial 1 mol·L-1 LiPF6-EC/PC (v:v = 1:1) electrolyte, and then was added into the high porous single ion conducting polymer electrolyte. The as-prepared single ion conducting polymer electrolyte was used as the polymer electrolyte for assembling lithium metal battery with the LiFePO4 cathode. The three-dimensional semi-interpenetrating network inside the high porous single ion conducting polymer electrolyte was fabricated by thermal-induced in-situ polymerization inside of the battery by putting the battery in an oven at high temperature. The key properties were successfully investigated. The results indicated that the formed three-dimensional semi-interpenetrating network of the single ion conducting polymer electrolyte was great favorable to improve the ionic conductivity and mechanical property of the polymer electrolyte, and subsequently, to effectively inhibit the growth of lithium dendrite. As a result, the ionic conductivity of 0.53 mS·cm-1 at room temperature and lithium ion transference number of 0.65 were successfully obtained through the implementation of this strategy. It is proved that the as-presented electrolyte can effectively inhibit the growth of lithium dendrite and improve the rate performance, which provides a facile solution for the development of lithium metal battery technology.
Available at: https://jelectrochem.xmu.edu.cn/journal/vol27/iss4/4
References
[1]
He G, Li Q W, Shen Y L, Ding Y. Flexible amalgam film enables stable lithium metal anodes with high capacities[J]. Angew. Chem. Int. Ed., 2019, 58(51): 18466-18470.
doi: 10.1002/anie.v58.51
URL
[2]
Chi S S, Qi X G, Hu Y S, Fan L Z. 3D flexible carbon felt host for highly stable sodium metal anodes[J]. Adv. Energy Mater., 2018, 8(15): 1702764.
doi: 10.1002/aenm.v8.15
URL
[3]
Albertus P, Babinec S, Litzelman S, Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nat. Energy, 2018, 3: 16-21.
doi: 10.1038/s41560-017-0047-2
URL
[4]
Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat. Nanotechnol., 2017, 12(3): 194-206.
doi: 10.1038/nnano.2017.16
URL
[5]
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473.
doi: 10.1021/acs.chemrev.7b00115
URL
[6]
Xu W, Wang J L, Ding F, Chen X L, Nasybutin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537.
doi: 10.1039/C3EE40795K
URL
[7]
Chen Y Z, Elangovan A, Zeng D L, Zhang Y F, Ke H Z, Li J, Sun Y B, Cheng H S. Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S batteries[J]. Adv. Funct. Mater., 2020, 30(4): 1906444.
doi: 10.1002/adfm.v30.4
URL
[8]
Nguyen H D, Kim G T, Shi J, Paillard E, Judeinstein P, Lyonnard S, Bresser D, Iojoiu C. Nanostructured multi-block copolymer single-ion conductors for safer high-per-formance lithium batteries[J]. Energy Environ. Sci., 2018, 11(11): 3298-3309.
doi: 10.1039/C8EE02093K
URL
[9]
He Y, Wang J Y, Zhang Y F, Huo S K, Zeng D L, Lu Y, Liu Z H, Wang D L, Cheng H S. Effectively suppressing lithium dendrite growth via an es-LiSPCE single-ion conducting nano fiber membrane[J]. J. Mater. Chem. A, 2020, 8(5): 2518-2528.
doi: 10.1039/C9TA12783F
URL
[10]
Liu M, Deng N P, Ju J G, Wang L Y, Wang G, Ma Y L, Kang W M, Yan J. Silver nanoparticle-doped 3D porous carbon nanofibers as separator coating for stable lithium metal anodes[J]. ACS Appl. Mater. Interfaces, 2019, 11(19): 17843-17852.
doi: 10.1021/acsami.9b04122
URL
[11]
Wang H, Fan S J, Cao Y L, Yang H X, Ai X P, Zhong F P. Building a cycle-stable Fe-Si alloy/carbon nanocomposite anode for Li-ion batteries through a covalent-bonding method[J]. ACS Appl. Mater. Interfaces, 2020, 12(27): 30503-30509.
doi: 10.1021/acsami.0c08456
URL
[12]
Shen Y F, Qian J F, Yang H X, Zhong F P, Ai X P. Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries[J]. Small, 2020, 16(7): 1907602.
doi: 10.1002/smll.v16.7
URL
[13]
Yao Y Z, Zhao X H, Razzaq A A, Gu Y T, Yuan X T, Shah R, Lian Y B, Lei J X, Mu Q Q, Ma Y, Peng Y, Deng Z, Liu Z F. Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping[J]. J. Mater. Chem. A, 2019, 7(19): 12214-12224.
doi: 10.1039/C9TA03679B
URL
[14]
Pathak R, Chen K, Gurung A, Reza K M, Bahrami B, Wu F, Chaudhary A, Ghimire N, Zhou B, Zhang W H, Zhou Y, Qiao Q Q. Ultrathin bilayer of graphite/SiO2 as solid interface for reviving Li metal anode[J]. Adv. Energy Mater., 2019, 9(36): 1901486.
doi: 10.1002/aenm.v9.36
URL
[15]
Zhang H, Li C M, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z B. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives[J]. Chem. Soc. Rev., 2017, 46(3): 797-815.
doi: 10.1039/C6CS00491A
URL
[16] Yang J(杨娟), Lang J W(郎俊伟), Zhang P(张鹏), Liu B(刘宝). Preparations of nanostructural MnO-porous graphene hybrid material by thermally-driven etching of MnO for lithium-air batteries[J]. J. Electrochem.(电化学), 2019, 25(5): 621-630.
[17] Hu X L(胡晓兰), Zhou C(周川), Dai S W(代少伟), Liu W J(刘文军), Li W D(李伟东), Zhou Y J(周玉敬), Qiu H(邱虹), Bai H(白华). Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy resin composites with different fiber surface properties[J]. Acta Mater. Compos. Sin.(复合材料学报), 2020, 37(5): 1070-1080.
[18]
Zhang Y F, Pan M Z, Liu X P, Li C C, Dong J M, Sun Y B, Zeng D L, Yang Z H, Cheng H S. Overcoming the ambient-temperature operation limitation in lithium-ion batteries by using a single-ion polymer electrolyte fabricated by controllable molecular design[J]. Energy Technol., 2018, 6(2): 289-295.
doi: 10.1002/ente.v6.2
URL
[19] Zhang J W, Wang S J, Han D M, Xiao M, Sun L Y, Meng Y Z. Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance[J]. Energy Storage Mater., 2020, 24: 579-587.
[20]
Shin D M, Bachman J E, Taylor M K, Kamcev J, Park J G, Ziebel M E, Velasquez E, Jarenwattananon N N, Sethi G K, Cui Y, Long J R. A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries[J]. Adv. Mater., 2020, 32: 1905771.
doi: 10.1002/adma.v32.10
URL
[21]
Liu J C, Pickett P D, Park B, Upadhyay S P, Orski S V, Schaefer J L. Non-solvating, side-chain polymer electrolytes as lithium single-ion conductors: synjournal and ion transport characterization[J]. Polym. Chem., 2020, 11(2): 461-471.
doi: 10.1039/C9PY01035A
URL
[22]
Deng K R, Zeng Q G, Wang D, Liu Z, Qiu Z P, Zhang Y F, Xiao M, Meng Y Z. Single-ion conducting gel polymer electrolytes: design, preparation and application[J]. J. Mater. Chem. A, 2020, 8(4): 1557-1577.
doi: 10.1039/C9TA11178F
URL
[23]
Zhang Y F, Cai W W, Rohan R, Pan M Z, Liu Y, Liu X P, Li C C, Sun Y B, Cheng H S. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte[J]. J. Power Sources, 2016, 306: 152-161.
doi: 10.1016/j.jpowsour.2015.12.010
URL
[24]
Zhang Y F, Rohan R, Cai W W, Xu G D, Sun Y B, Lin A, Cheng H S. Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2014, 6(20): 17534-17542.
doi: 10.1021/am503152m
URL
[25]
Zhang Y F, Lim C A, Cai W W, Rohan R, Xu G D, Sun Y B, Cheng H S. Design and synjournal of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries[J]. RSC Adv., 2014, 4(83): 43857-43864.
doi: 10.1039/C4RA08709G
URL
[26]
Zhang Y F, Xu G D, Sun Y B, Han B, Teguh B W T, Chen Z X, Rohan R, Cheng H S. A class of sp3 boron-based single-ion polymeric electrolytes for lithium ion batteries[J]. RSC Adv., 2013, 3(35): 14934-14937.
doi: 10.1039/c3ra41167b
URL
[27]
Wang J Y, He Y, Wu Q, Zhang Y F, Li Z Y, Liu Z H, Huo S K, Dong J M, Zeng D L, Cheng H S. A facile non-solvent induced phase separation process for preparation of highly porous polybenzimidazole separator for lithium metal battery application[J]. Sci. Rep., 2019, 9: 19320-19329.
doi: 10.1038/s41598-019-55865-6
URL
[28] Hu J(胡静), Huang B(黄碧斌), Jiang L P(蒋莉萍), Fang K H(冯凯辉), Li Q H(李琼慧), Xu Z(许钊). Application and major issues of electrochemical energy storage under the environment of power market[J]. Electric Power(中国电力), 2020, 53(1): 100-107.
[29]
Xu R, Xiao Y, Zhang R, Cheng X B, Zhao C Z, Zhang X Q, Yan C, Zhang Q, Huang J Q. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries[J]. Adv. Mater., 2019, 31(19): 1808392.
doi: 10.1002/adma.v31.19
URL
[30]
Liu Z H, Chai J C, Xu G J, Wang Q F, Cui G L. Functional lithium borate salts and their potential application in high performance lithium batteries[J]. Coord. Chem. Rev., 2015, 292: 56-73.
doi: 10.1016/j.ccr.2015.02.011
URL
[31]
Qin B S, Liu Z H, Zheng J, Hu P, Ding G L, Zhang C J, Zhao J H, Kong D S, Cui G L. Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries[J]. J. Mater. Chem. A, 2015, 3(15): 7773-7779.
doi: 10.1039/C5TA00216H
URL
[32]
Qin B S, Liu Z H, Ding G L, Duan Y L, Zhang C J, Cui G L. A single-ion gel polymer electrolyte system for improving cycle performance of LiMn2O4 battery at elevated temperatures[J]. Electrochim. Acta, 2014, 141: 167-172.
doi: 10.1016/j.electacta.2014.07.004
URL
[33]
Zhang Y F, Chen Y Z, Liu Y, Qin B S, Yang Z H, Sun Y B, Zeng D L, Varzi A, Passerini S, Liu Z H, Cheng H S. Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries[J]. J. Power Sources, 2018, 397: 79-86.
doi: 10.1016/j.jpowsour.2018.07.007
URL
[34]
Dong J M, Zhang Y F, Wang J Y, Yang Z H, Sun Y B, Zeng D L, Liu Z H, Cheng H S. Highly porous single ion conducting polymer electrolyte for advanced lithium-ion batteries via facile water-induced phase separation process[J]. J. Membr. Sci., 2018, 568: 22-29.
doi: 10.1016/j.memsci.2018.09.052
URL
[35]
Liu Y, Zhang Y F, Pan M Z, Liu X P, Li C C, Sun Y B, Zeng D L, Cheng H S. A mechanically robust porous single ion conducting electrolyte membrane fabricated via self-assembly[J]. J. Membr. Sci., 2016, 507: 99-106.
doi: 10.1016/j.memsci.2016.02.002
URL
[36]
Li C C, Qin B S, Zhang Y F, Varzi A, Passerini S, Wang J Y, Dong J M, Zeng D L, Liu Z H, Cheng H S. Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries[J]. Adv. Energy Mater., 2019, 9(10): 1970029.
doi: 10.1002/aenm.v9.10
URL
[37] Zan L N(昝丽娜). Comprehensive experimental design of preparation of multiwalled carbon nanotubes/polyvinyl alcohol composite fiber by electrospining[J]. Chin. J. Chem. Edu.(化学教育(中英文)), 2020, 29(41): 76-80.
[38]
Li H, Wu D B, Wu J, Dong L Y, Zhu Y J, Hu X L. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries[J]. Adv. Mater., 2017, 29(44): 1703548.
doi: 10.1002/adma.201703548
URL
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons