•  
  •  
 

Corresponding Author

Hong-Yan Dai(daihongyan12@sina.com)

Abstract

Microbial electrolysis cell (MEC) is a relatively new bioelectrochemical technology that produces H2 and meanwhile treats organic wastewater. Cathode hydrogen evolution catalyst plays a key role in MEC. The doping of Graphene Quantum Dots (GQDs) into MoS2 nanosheets can improve the catalytic activity of MoS2 by creating abundant defect sites both in the edge plane and the basal plane, as well as enhancing the electrical conductivity. In this paper, using Na2MoO4 , cysteine and GQDs as raw materials, a series of MoS2/GQDs composites were firstly synthesized via hydrothermal method, and then loaded on the carbon-based electrode. The optimal electrode was selected by electrochemical testing methods and used as a cathode of MEC to research the hydrogen production capacity. SEM image showed that the MoS2/GQDs composite exhibited a popcorn-like nanosheet structure and the thickness of each nanosheet was about 10 nm. The specific surface area of MoS2/GQDS composite reached 67.155 m2·g-1, which was 16 times of the specific surface area of MoS2 (4.197 m2·g-1). TEM image showed that some lattice fringes representing GQDs were intermixed with lattice fringes representing MoS2, which indicated that GQDs were well embedded in MoS2 . EDS results showed that the MoS2/GQDS composite contained Mo, S, C and O, and the atomic ratio of Mo: S: C: O = 1:2.5:1.9:1.2, indicating that the majority of Mo and S in the composite existed in the form of MoS2, while a part of S existed in the form of SOx. The LSV data of MoS2/GQDs carbon paper electrode showed that the synthesized MoS2/GQDs composite (2#) had the best catalytic activity toward hydrogen evolution when the raw material ratio of Na2MoO4, cysteine and GQDs was 375:600:1 with the optimum load of 1.5 mg·cm-2. The Tafel slope of MoS2/GQDs electrode (2#, 1.5 mg·cm-2) was found to be 44.3 mV·dec-1, lower than that of pure MoS2 electrode, which indicated that the doping of GQDs into MoS2 nanosheets made the electron transport more efficiently and the interfacial resistance was significantly reduced. In the MEC tests, the maximum hydrogen current density of MoS2/GQDS cathode (2#, 1.5 mg·cm-2) MEC reached 14.70 ± 0.80 A·m-2, which was comparable to that of Pt/C cathode MEC (14.58 ± 0.92 A·m-2), indicating that MoS2/GQDS had a good catalytic activity for hydrogen evolution. The gas production, hydrogen production rate, coulombic efficiency, hydrogen recovery efficiency, cathodic hydrogen recovery efficiency, electrical and overall energy recovery efficiencies of MoS2/GQDs cathode (2#, 1.5 mg·cm-2) MEC were, respectively, 51.15±3.15 mL·cycle-1, 0.40±0.032 m3H2·m-3d-1, 91.16±0.054%, 66.64±5.39%, 72.44±2.60%, 217.26±7.42% and 77.37±1.50%, which were slightly higher than or comparable to those of Pt/C cathode MEC. In addition, MoS2/GQDs enjoyed good stability and price advantage, which might promote the practical application of MECs.

Graphical Abstract

Keywords

MoS2/GQDs, carbon-based electrode, microbial electrolysis cell, hydrogen production

Publication Date

2021-08-28

Online Available Date

2021-01-29

Revised Date

2020-12-10

Received Date

2020-07-24

References

[1] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
doi: 10.1038/nature11475 URL

[2] Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
doi: 10.1126/science.1103197 URL

[3] Liu H, Grot S, Logan B E. Electrochemically assisted microbial production of hydrogen from acetate[J]. Environ. Sci. Technol., 2005, 39(11): 4317-4320.
doi: 10.1021/es050244p URL

[4] Kundu A, Sahu J N, Redzwan G, Hashim M A. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell[J]. Int. J. Hydrog. Energy, 2013, 38(4): 1745-1757.
doi: 10.1016/j.ijhydene.2012.11.031 URL

[5] De Silva Muňoz L, Bergel A, Féron D, Basseguy R. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode[J]. Int. J. Hydrog. Energy, 2010, 35(16): 8561-8568.
doi: 10.1016/j.ijhydene.2010.05.101 URL

[6] He B H, Chen L, Jing M J, Zhou M J, Hou Z H, Chen X B. 3D MoS2-rGO@Mo nanohybrids for enhanced hydrogen evolution: The importance of the synergy on the Volmer reaction[J]. Electrochim. Acta, 2018, 283: 357-365.
doi: 10.1016/j.electacta.2018.06.168 URL

[7] Wu Z Z, Fei H, Wang D Z. MoS2/Cu2O nanohybrid as a highly efficient catalyst for the photoelectrocatalytic hydrogen generation[J]. Mater. Lett., 2019, 256: 126622.
doi: 10.1016/j.matlet.2019.126622 URL

[8] Xiang Z C, Zhang Z, Xu X J, Zhang Q, Yuan C W. MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution[J]. Carbon, 2016, 98: 84-89.
doi: 10.1016/j.carbon.2015.10.071 URL

[9] Li G Q, Zhang D, Qiao Q, Li G Q, Zhang D, Qiao Q, Yu Y F, Peterson D, Zafar A, Kumar R, Curtarolo S, Hunte F, Shannon S, Zhu Y M, Yang W T, Cao L Y. All the catalytic active sites of MoS2 for hydrogen evolution[J]. J. Am. Chem. Soc., 2016, 138(51): 16632-16638.
doi: 10.1021/jacs.6b05940 URL

[10] Guo J X, Zhu H F, Sun Y F, Tang L, Zhang X. Doping MoS2 with graphene quantum dots: structural and electrical engineering towards enhanced electrochemical hydrogen evolution[J]. Electrochim. Acta, 2016, 211: 603-610.
doi: 10.1016/j.electacta.2016.05.148 URL

[11] Laursen A B, Kegnaes S, Dahl S, Chorkendorff I. Molybdenum sulfides efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution[J]. Energy Environ. Sci., 2012, 5(2): 5577-5591.
doi: 10.1039/c2ee02618j URL

[12] Kong D S, Wang H T, Cha J J, Pasta M, Koski K J, Yao J, Cui Y. Synjournal of MoS2 and MoSe2 films with vertically aligned layers[J]. Nano Lett., 2013, 13(3): 1341-1347.
doi: 10.1021/nl400258t URL

[13] Dai H Y(代红艳), Yang H M(杨慧敏), Liu X(刘宪), Jian X(简选), Guo M M(郭敏敏), Cao L L(曹乐乐), Liang Z H(梁镇海). Preparation and electrochemical evaluation of MoS2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Chem. J. Chinese U.(高等学校化学学报), 2018, 39(2): 351-358.

[14] Li F, Li J, Lin X Q, Li X Z, Fang Y Y, Jiao L X, An X C, Fu Y, Jin J, Li R. Designed synjournal of multi-walled carbon nanotubes@Cu@MoS2 hybrid as advanced electrocatalyst for highly efficient hydrogen evolution reaction[J]. J. Power Sources, 2015, 300: 301-308.
doi: 10.1016/j.jpowsour.2015.09.084 URL

[15] Hu W H, Han G Q, Liu Y R, Dong B, Chai Y M, Liu Y Q, Liu C G. Ultrathin MoS2-coated carbon nanospheres as highly efficient electrocatalyts for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2015, 40(20): 6552-6558.
doi: 10.1016/j.ijhydene.2015.03.150 URL

[16] Ge P Y, Scanlon M D, Peljo P, Bian X J, Vubrel H, O'Neill A, Coleman J N, Cantoni M, Hu X L, Kontturi K, Liu B H, Girault H H. Hydrogen evolution across nano-schottky Junctions at carbon supported MoS2 catalysts in biphasic liquid systems[J]. Chem. Comm, 2012, 48(52): 6484-6486.
doi: 10.1039/c2cc31398g URL

[17] Wang P C, Wan L, Lin Y Q, Wang B G. MoS2 supported CoS2 on carbon cloth as a high performance electrode for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2019, 44(31): 16566-16574.
doi: 10.1016/j.ijhydene.2019.04.195 URL

[18] Guo Y X, Zhang X Y, Zhang X P, You T Y. Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution[J]. J. Mater. Chem. A, 2015, 3(31): 15927-15934.
doi: 10.1039/C5TA03766B URL

[19] Karunadasa H I, Montalvo E, Sun Y J, Majda M, Long J R, Chang C J. A molecular MoS2 edge site mimic for catalytic hydrogen generation[J]. Science, 2012, 335(6069): 698-702.
doi: 10.1126/science.1215868 URL

[20] Wu L Q, Xu X B, Zhao Y Q, Zhang K Y, Sun Y, Wang T T, Wang Y Q, Zhong W, Du Y W. Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution[J]. Appl. Surf. Sci., 2017, 425: 470-477.
doi: 10.1016/j.apsusc.2017.06.223 URL

[21] Yan Y, Xia B Y, Ge X M, Liu Z L, Wang J Y, Wang X. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2013, 5(24): 12794-12798.
doi: 10.1021/am404843b URL

[22] Xie J F, Zhang H, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W, Xie Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Adv. Mater., 2013, 25(40): 5807-5813.
doi: 10.1002/adma.v25.40 URL

[23] Antonios K. Graphene quantum dots: In the crossroad of graphene, quantum dots and carbogenic nanoparticles[J]. Curr. Opin. Colloid Interface Sci., 2015, 20(5-6): 354-361.
doi: 10.1016/j.cocis.2015.11.001 URL

[24] Dai H Y(代红艳), Yang H M(杨慧敏), Liu X(刘宪), Song X L(宋秀丽), Liang Z H(梁镇海). Hydrogen production of microbial electrolysis cell using scrap metal net as cathode and the analysis of microbial community structure in anode[J]. J. Electrochem.(电化学), 2019, 25(6): 773-780.

[25] Li Z W, Ye R Q, Feng R, Kang Y M, Zhu X, Tour J M, Fang Z Y. Graphene quantum dots doping of MoS2 monolayers[J]. Adv. Mater., 2015, 27(35): 5235-5240.
doi: 10.1002/adma.201501888 URL

[26] Zhao X, Zhu H, Yang X R. Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution[J]. Nanoscale, 2014, 6(18): 10680-10685.
doi: 10.1039/C4NR01885K URL

[27] Chao D L, Zhu C R, Xia X H, Liu J L, Zhang X, Wang J, Liang P, Lin J Y, Zhang H, Shen Z X, Fan H J. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries[J]. Nano Lett., 2015, 15(1): 565-573.
doi: 10.1021/nl504038s URL

[28] Wang C X, Jin J L, Sun Y Y, Yao J R, Zhao G Z, Liu Y Q. In-situ synjournal and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite[J]. Chem. Eng. J., 2017, 327: 774-782.
doi: 10.1016/j.cej.2017.06.163 URL

[29] Miao J W, Xiao F X, Yang H B, Khoo S Y, Chen J Z, Fan Z X, Hsu Y Y, Chen H M, Zhang H, Liu B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte[J]. Sci. Adv., 2015, 1(7): e1500259.
doi: 10.1126/sciadv.1500259 URL

[30] Guo J X, Li F F, Sun Y F, Zhang X, Tang L. Oxygen-incorporated MoS2 ultrathin nanosheets grown on graphene for efficient electrochemical hydrogen evolution[J]. J. Power Sources, 2015, 291: 195-200.
doi: 10.1016/j.jpowsour.2015.05.034 URL

[31] Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nano-sheets for efficient hydrogen evolution[J]. J. Am. Chem. Soc., 2013, 135(47): 17881-17888.
doi: 10.1021/ja408329q URL

[32] Zhao S Y, Li C X, Wang L P, Liu N Y, Qiao S, Liu B B, Huang H, Liu Y, Kang Z H. Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic ability[J]. Carbon, 2016, 99: 599-606.
doi: 10.1016/j.carbon.2015.12.088 URL

[33] Lu Y Z, Jiang Y Y, Wei W T, Wu H B, Liu M M, Niu L, Chen W. Novel blue light emitting graphene oxide nanosheets fabricated by surface functionalization[J]. J. Mater. Chem., 2012, 22(7): 2929-2934.
doi: 10.1039/C1JM14174K URL

[34] Liu M M, Chen W. Green synjournal of silver nanoclusters supported on carbon nanodots: enhanced photoluminescence and high catalytic activity for oxygen reduction reaction[J]. Nanoscale, 2013, 5(24): 12558-12564.
doi: 10.1039/c3nr04054b URL

[35] Hu W H, Shang X, Han G Q, Dong B, Liu Y R, Li X, Chai Y M, Liu Y Q, Liu C G. MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution[J]. Carbon, 2016, 100: 236-242.
doi: 10.1016/j.carbon.2016.01.019 URL

[36] Yan Y, Ge X M, Liu Z L, Wang J Y, Lee J M, Wang X. Facile synjournal of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction[J]. Nanoscale, 2013, 5(17): 7768-7771.
doi: 10.1039/c3nr02994h URL

[37] Zheng X L, Xu J B, Yan K Y, Wang H, Wang Z L. Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction[J]. Chem. Mater., 2014, 26(7): 2344-2353.
doi: 10.1021/cm500347r URL

[38] Merki D, Hu X L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts[J]. Energy Environ. Sci., 2011, 4(10): 3878-3888.
doi: 10.1039/c1ee01970h URL

[39] Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2011, 133(19): 7296-7299.
doi: 10.1021/ja201269b URL

[40] Kong D S, Wang H T, Lu Z Y, Cui Y. CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2014, 136(13): 4897-4900.
doi: 10.1021/ja501497n URL

[41] Dai H Y, Yang H M, Liu X, Jian X, Liang Z H. Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Fuel, 2016, 174: 251-256.
doi: 10.1016/j.fuel.2016.02.013 URL

[42] Tokash J C, Logan B E. Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells[J]. Int. J. Hydrog. Energy, 2011, 36(16): 9439-9445.
doi: 10.1016/j.ijhydene.2011.05.080 URL

[43] Su M, Wei L L, Qiu Z Z, Wang G, Shen J Q. Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes[J]. J. Power Sources, 2016, 301: 29-34.
doi: 10.1016/j.jpowsour.2015.09.108 URL

[44] Wang A J, Liu W Z, Cheng S A, Xing D F, Zhou J H, Logan B E. Source of methane and methods to control its formation in single chamber microbial electrolysis cells[J]. Int. J. Hydrog. Energy, 2009, 34(9): 3653-3658.
doi: 10.1016/j.ijhydene.2009.03.005 URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.