Abstract
In recent years, the nickel-based phosphide has drawn great attention because of its low intercalation/deintercalation platform and lower polarization compared to sulfides and oxides as anodes for next-generation high-energy lithium-ion batteries. The Ni2P anode can deliver high theoretical specific capacity of 542 mAh·g-1, but it subject to a conversion reaction mechanism, which make them unsuitable for commercial applications. The agglomeration of Ni2P nanoparticles during material fabrication and the structural deterioration of electrode associated with large volume change during charge-discharge process lead to poor cycle stability and low utilization of active materials. Meanwhile, the low intrinsic conductivity of Ni2P is also sluggish electrochemical reaction kinetics. Herein, we design a facile and viable approach to synthesize Ni2P/NPC composites with a stable structure to address these issues. This new approach entails synthesis of Ni2P/NPC by a N and P co-doped carbon framework with ionic liquids assistance during synthesis. This stable composite structure can serve as anode material of lithium ion batteries with good electrochemical performance. The Ni2P/NPC composites were prepared by one-step method using ionic liquids as carbon and nitrogen sources, while sodium hypophosphite and nickel acetate as phosphorus and nickel sources, respectively. The results of SEM and TEM show that Ni2P nanoparticles were uniformly distributed on the N and P co-doped carbon framework. When the Ni2P/NPC composite was used as an anode material of lithium ion batteries, the discharge specific capacities were 377.7, 294.1, 265.4, 211.7 and 187.5 mAh·g-1 at 0.1, 0.5, 1, 3 and 5 A·g-1, respectively. When the current density returned to 0.1 A·g-1, the discharge specific capacity reached 368.1 mAh·g-1. The Ni2P/NPC structure could be kept stable at high rate, showing excellent rate performance. The fabricated Ni2P/NPC anode delivered the discharge specific capacity of 301.8 mAh·g-1 with the capacity retention of 80.7% after 200 cycles at 0.5 A·g-1. Finally, CV curves confirmed that the lithium storage of Ni2P/NPC colud be controlled by diffusion process and capacitance behavior.
Graphical Abstract
Keywords
nickel phosphide, nitrogen and phosphorous co-doped carbon, lithium storage
Publication Date
2021-10-28
Online Available Date
2020-11-16
Revised Date
2020-11-08
Received Date
2020-07-14
Recommended Citation
Jian Hu, Yan-Shuang Meng, Qian-Ru Hu.
Synthesis of Nickel Phosphide/Nitrogen Phosphorus Co-Doped Carbon and Its Application in Lithium Ion Batteries[J]. Journal of Electrochemistry,
2021
,
27(5): 540-548.
DOI: In recent years, the nickel-based phosphide has drawn great attention because of its low intercalation/deintercalation platform and lower polarization compared to sulfides and oxides as anodes for next-generation high-energy lithium-ion batteries. The Ni2P anode can deliver high theoretical specific capacity of 542 mAh·g-1, but it subject to a conversion reaction mechanism, which make them unsuitable for commercial applications. The agglomeration of Ni2P nanoparticles during material fabrication and the structural deterioration of electrode associated with large volume change during charge-discharge process lead to poor cycle stability and low utilization of active materials. Meanwhile, the low intrinsic conductivity of Ni2P is also sluggish electrochemical reaction kinetics. Herein, we design a facile and viable approach to synthesize Ni2P/NPC composites with a stable structure to address these issues. This new approach entails synthesis of Ni2P/NPC by a N and P co-doped carbon framework with ionic liquids assistance during synthesis. This stable composite structure can serve as anode material of lithium ion batteries with good electrochemical performance. The Ni2P/NPC composites were prepared by one-step method using ionic liquids as carbon and nitrogen sources, while sodium hypophosphite and nickel acetate as phosphorus and nickel sources, respectively. The results of SEM and TEM show that Ni2P nanoparticles were uniformly distributed on the N and P co-doped carbon framework. When the Ni2P/NPC composite was used as an anode material of lithium ion batteries, the discharge specific capacities were 377.7, 294.1, 265.4, 211.7 and 187.5 mAh·g-1 at 0.1, 0.5, 1, 3 and 5 A·g-1, respectively. When the current density returned to 0.1 A·g-1, the discharge specific capacity reached 368.1 mAh·g-1. The Ni2P/NPC structure could be kept stable at high rate, showing excellent rate performance. The fabricated Ni2P/NPC anode delivered the discharge specific capacity of 301.8 mAh·g-1 with the capacity retention of 80.7% after 200 cycles at 0.5 A·g-1. Finally, CV curves confirmed that the lithium storage of Ni2P/NPC colud be controlled by diffusion process and capacitance behavior.
Available at: https://jelectrochem.xmu.edu.cn/journal/vol27/iss5/11
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons