Corresponding Author

Yan-Shuang Meng(mengyanshuang@163.com)


In recent years, the nickel-based phosphide has drawn great attention because of its low intercalation/deintercalation platform and lower polarization compared to sulfides and oxides as anodes for next-generation high-energy lithium-ion batteries. The Ni2P anode can deliver high theoretical specific capacity of 542 mAh·g-1, but it subject to a conversion reaction mechanism, which make them unsuitable for commercial applications. The agglomeration of Ni2P nanoparticles during material fabrication and the structural deterioration of electrode associated with large volume change during charge-discharge process lead to poor cycle stability and low utilization of active materials. Meanwhile, the low intrinsic conductivity of Ni2P is also sluggish electrochemical reaction kinetics. Herein, we design a facile and viable approach to synthesize Ni2P/NPC composites with a stable structure to address these issues. This new approach entails synthesis of Ni2P/NPC by a N and P co-doped carbon framework with ionic liquids assistance during synthesis. This stable composite structure can serve as anode material of lithium ion batteries with good electrochemical performance. The Ni2P/NPC composites were prepared by one-step method using ionic liquids as carbon and nitrogen sources, while sodium hypophosphite and nickel acetate as phosphorus and nickel sources, respectively. The results of SEM and TEM show that Ni2P nanoparticles were uniformly distributed on the N and P co-doped carbon framework. When the Ni2P/NPC composite was used as an anode material of lithium ion batteries, the discharge specific capacities were 377.7, 294.1, 265.4, 211.7 and 187.5 mAh·g-1 at 0.1, 0.5, 1, 3 and 5 A·g-1, respectively. When the current density returned to 0.1 A·g-1, the discharge specific capacity reached 368.1 mAh·g-1. The Ni2P/NPC structure could be kept stable at high rate, showing excellent rate performance. The fabricated Ni2P/NPC anode delivered the discharge specific capacity of 301.8 mAh·g-1 with the capacity retention of 80.7% after 200 cycles at 0.5 A·g-1. Finally, CV curves confirmed that the lithium storage of Ni2P/NPC colud be controlled by diffusion process and capacitance behavior.

Graphical Abstract


nickel phosphide, nitrogen and phosphorous co-doped carbon, lithium storage

Publication Date


Online Available Date


Revised Date


Received Date



[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
doi: 10.1038/451652a URL

[2] Chen D J, Zhou Z Q, Feng C, Lü W Q, Wei Z H, Zhang K H L, Lin B, Wu S H, Lei T Y, Guo X Y, Zhu G L, Jian X, Xiong J, Traversa E, Dou S X, He W D. An upgraded lithium ion battery based on a polymeric separator incorporated with anode active materials[J]. Adv. Energy Mater., 2019, 9(15): 1803627.
doi: 10.1002/aenm.v9.15 URL

[3] Qi W, Shapter J G, Wu Q, Yin T, Gao G, Cui D X. Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives[J]. J. Mater. Chem. A, 2017, 5(37): 19521-19540.
doi: 10.1039/C7TA05283A URL

[4] Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. J. Power Sources, 2010, 195(9): 2419-2430.
doi: 10.1016/j.jpowsour.2009.11.048 URL

[5] Jin J Y, Wang Z W, Wang R, Wang J L, Huang Z D, Ma Y W, Li H, Wei S H, Huang X, Yan J X, Li S Z, Huang W. Achieving high volumetric lithium storage capacity in compact carbon materials with controllable nitrogen doping[J]. Adv. Funct. Mater., 2019, 29(12): 1807441.
doi: 10.1002/adfm.v29.12 URL

[6] Pralong V, Souza D C S, Leung K T, Nazar L F. Reversible lithium uptake by CoP3 at low potential: role of the anion[J]. Electrochem. Commun., 2002, 4(6): 516-520.
doi: 10.1016/S1388-2481(02)00363-6 URL

[7] Lou P L, Cui Z H, Jia Z Q, Sun J Y, Tan Y B, Guo X X. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage[J]. ACS Nano, 2017, 11(4): 3705-3715.
doi: 10.1021/acsnano.6b08223 URL

[8] Carenco S, Surcin C, Morcrette M, Larcher D, Mezailles N, Boissiere C, Sanchez C. Improving the Li-electrochemical properties of monodisperse Ni2P nanoparticles by self-generated carbon coating[J]. Chem. Mater., 2012, 24(4): 688-697.
doi: 10.1021/cm203164a URL

[9] Feng Y Y, OuYang Y, Peng L, Qiu H J, Wang H L, Wang Y. Quasi-graphene-envelope Fe-doped Ni2P sandwiched nanocomposites for enhanced water splitting and lithium storage performance[J]. J. Mater. Chem. A, 2015, 3(18): 9587-9594.
doi: 10.1039/C5TA01103E URL

[10] Li M, Du H R, Kuai L, Huang K F, Xia Y Y, Geng B Y. Scalable dry production process of a superior 3D net-like carbon‐based iron oxide anode material for lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2017, 56(41): 12649-12653.
doi: 10.1002/anie.v56.41 URL

[11] Green O, Grubjesic S, Lee S W, Firestone M A. The design of polymeric ionic liquids for the preparation of functional materials[J]. Polym. Rev., 2009, 49(4): 339-360.
doi: 10.1080/15583720903291116 URL

[12] Kang X C, Sun X F, Han B X. Synjournal of functional nanomaterials in ionic liquids[J]. Adv. Mater., 2016, 28(6): 1011-1030.
doi: 10.1002/adma.201502924 URL

[13] Zhang H F(张韩方), Wei F(魏风), Sun J(孙健), Jing M Y(荆梦莹), He X J(何孝军). Ionic liquid assisted synjournal of porous carbons from rice husk for supercapacitors[J]. J. Electrochem.(电化学), 2019, 25(6): 764-772.

[14] Chen T Q, Pan L K, Lu T, Fu C L, Chua D H C, Sun Z. Fast synjournal of carbon microspheres via a microwave-assisted reaction for sodium ion batteries[J]. J. Mater. Chem. A, 2014, 2(5): 1263-1267.
doi: 10.1039/C3TA14037G URL

[15] Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Phys. Chem. Chem. Phys., 2007, 9(11): 1276-1290.
pmid: 17347700

[16] Zheng F C, Yang Y, Chen Q W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nat. Commun., 2014, 5(5): 5261.
doi: 10.1038/ncomms6261 URL

[17] Lu Y Y, Li Z W, Bai Z Y, Mi H Y, Ji C C, Pang H, Yu C, Qiu J S. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode[J]. Nano Energy, 2019, 66: 104132.
doi: 10.1016/j.nanoen.2019.104132 URL

[18] Xia Q Y, Yang H, Wang M, Yang M, Guo Q B, Wan L M, Xia H, Yu Y. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode[J]. Adv. Energy Mater., 2017, 7(22): 1701336.
doi: 10.1002/aenm.201701336 URL

[19] Wang H G, Yuan C P, Zhou R, Duan Q, Li Y H. Self-sacrifice template formation of nitrogen-doped porous carbon microtubes towards high performance anode materials in lithium ion batteries[J]. Chem. Eng. J., 2017, 316: 1004-1010.
doi: 10.1016/j.cej.2017.02.059 URL

[20] Ma W P, Xie L J, Dai L Q, Sun G H, Chen J Z, Su F Y, Cao Y F, Lei H, Kong Q Q, Chen C M. Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode[J]. Electrochim. Acta, 2018, 266: 420-430.
doi: 10.1016/j.electacta.2018.02.031 URL

[21] Wu Z S, Winter A, Chen L, Sun Y, Turchanin A, Feng X L, Mullen K. Three-dimensional nitrogen and boron Co-doped graphene for high-performance all-solid-state supercapacitors[J]. Adv. Mater., 2012, 24(37): 5130-5135.
doi: 10.1002/adma.201201948 URL

[22] Huang L J, Cao X X, Pan A Q, Chen J, Kong X Z, Yang Y Q, Liang S Q, Cao G Z. Bimetallic phosphides embedded in hierarchical P-doped carbon for sodium ion battery and hydrogen evolution reaction applications[J]. Sci. China. Mater., 2019, 62(12): 1857-1867.
doi: 10.1007/s40843-019-9474-0 URL

[23] Dong C F, Guo L J, He Y Y, Chen C J, Qian Y T, Chen Y N, Xu L Q. Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries[J]. Energy Stor. Mater., 2018, 15: 234-241.

[24] Zheng J L, Huang X M, Pan X, Teng C, Wang N. Yolk-shelled Ni2P@carbon nanocomposite as high-performance anode material for lithium and sodium ion batteries[J]. Appl. Surf. Sci., 2019, 473: 699-705.
doi: 10.1016/j.apsusc.2018.12.225 URL

[25] Lu Y, Wang X L, Mai Y J, Xiang J Y, Zhang H, Li L, Gu C D, Tu J P, Mao S X. Ni2P/graphene sheets as anode materials with enhanced electrochemical properties versus lithium[J]. J. Phys. Chem. C, 2012, 116(42): 22217-22225.
doi: 10.1021/jp3073987 URL

[26] Guo H N, Cai H C, Li W Q, Chen C C, Chen K, Zhang Y, Li Y W, Wang M Y, Wang Y J. Tailored Ni2P nanoparticles supported on N-doped carbon as a superior anode material for Li-ion batteries[J]. Inorg. Chem. Front., 2019, 6(7): 1881-1889.
doi: 10.1039/C9QI00480G URL

[27] Xia Q, Zhao H L, Du Z H, Zhang Z J, Li S M, Gao C H, Swierczek K. Design and synjournal of a 3-D hierarchical molybdenum dioxide/nickel/carbon structured composite with superior cycling performance for lithium ion batteries[J]. J. Mater. Chem. A, 2016, 4(2): 605-611.
doi: 10.1039/C5TA07052J URL

[28] Brousse T, B'elanger D, Long J W. To be or not to be pseudocapacitive?[J]. J. Electrochem. Soc., 2015, 162(5): A5185-A5189.
doi: 10.1149/2.0201505jes URL

[29] Li J B, Li J L, Yan D, Hou S J, Xu X T, Lu T, Yao Y F, Mai W J, Pan L K. Design of pomegranate-like clusters with NiS2 nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance[J]. J. Mater. Chem. A, 2018, 6(15): 6595-6605.
doi: 10.1039/C8TA00557E URL

[30] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environ. Sci., 2014, 7(5): 1597-1614.
doi: 10.1039/c3ee44164d URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.