•  
  •  
 

Corresponding Author

Qiu-An Huang(qiuan_huang@shu.edu.cn);
Juan Wang(juanwang168@gmail.com);
Jiu-Jun Zhang(jiujun.zhang@i.shu.edu.cn)

Abstract

Electrochemical impedance spectroscopy (EIS) can be used to diagnose charge transfer reactions and mass transport in porous electrodes. The charge transfer reactions include interfacial charge accumulation and charge conduction as well as electrochemical reaction. In this paper, the complex phasor method is developed under the macrohomogeneous assumption to build an impedance model of porous electrodes for clarifying several vague expressions in the traditional approaches. The following researches are carried out: (1) Identifying characteristic parameters for the porous electrodes, including electrode electronic conductivity σ1, electrolyte ionic conductivity σ2, interface charge transfer conductivity gct, unit area interface capacitance C, solid phase diffusion coefficient D, rate constant k, electrode thickness d, characteristic hole depth Lp and unit volume surface area Sc ; (2) elucidating characteristic output parameters for the impedance spectroscopic response, including field diffusion constant K, characteristic frequencies ω0, ω1, ω2, ω3, and ωmax for interface conduction reaction, finite field diffusion, redox reaction, pore diffusion and minimum characteristic pore size, respectively. In addition, the transition frequencies fk1 and fk2 from conduction to diffusion area and from diffusion to saturation area are also defined and studied respectively; (3) defining the parameters X and Z, herein, X = σ1,Z = dSc, Lp , C, gct , D, k,which are responsible for the evolution trend of the characteristic parameters for impedance spectroscopic response, the competition effects of X and Z parameters coupled in charge transfer reaction are analyzed; (4) Further analyzing the competition effects of X and Z parameters coupled in the charge transfer reaction, the diverging frequencies fXZ and fXZ are phenomenologically defined. The locations of fXZ and fXZ can indicate the depth and breadth of the charge transfer reaction affected by the parameters X and Z. The non-existence of fXZ and fXZ indicates that the parameter X or Z can affect the charge transfer reaction over the whole frequency range. With the help of characteristic frequency and diverging frequency, the effects of electrode kinetic and microstructure parameters on the charge transfer reaction in porous electrodes are studied; on the other hand, the shape change and trend evolution of the impedance responses for porous electrodes are analyzed. The research results in this paper should be able to provide theoretical basis for system simulation and system identification of impedance spectroscopy, technical support for competitive analysis of charge transfer reaction in porous electrodes, and diagnostic tool for optimal design of electrochemical energy storage system.

Graphical Abstract

Keywords

porous electrode, charge transfer reaction, electrochemical impedance spectroscopy, characteristic frequencies, diverging frequencies

Publication Date

2021-10-28

Online Available Date

2021-02-09

Revised Date

2020-12-25

Received Date

2020-11-26

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.