Abstract
Electrochemical impedance spectroscopy (EIS) can be used to diagnose charge transfer reactions and mass transport in porous electrodes. The charge transfer reactions include interfacial charge accumulation and charge conduction as well as electrochemical reaction. In this paper, the complex phasor method is developed under the macrohomogeneous assumption to build an impedance model of porous electrodes for clarifying several vague expressions in the traditional approaches. The following researches are carried out: (1) Identifying characteristic parameters for the porous electrodes, including electrode electronic conductivity σ1, electrolyte ionic conductivity σ2, interface charge transfer conductivity gct, unit area interface capacitance C, solid phase diffusion coefficient D, rate constant k, electrode thickness d, characteristic hole depth Lp and unit volume surface area Sc ; (2) elucidating characteristic output parameters for the impedance spectroscopic response, including field diffusion constant K, characteristic frequencies ω0, ω1, ω2, ω3, and ωmax for interface conduction reaction, finite field diffusion, redox reaction, pore diffusion and minimum characteristic pore size, respectively. In addition, the transition frequencies fk1 and fk2 from conduction to diffusion area and from diffusion to saturation area are also defined and studied respectively; (3) defining the parameters X and Z, herein, X = σ1,Z = d、Sc, Lp , C, gct , D, k,which are responsible for the evolution trend of the characteristic parameters for impedance spectroscopic response, the competition effects of X and Z parameters coupled in charge transfer reaction are analyzed; (4) Further analyzing the competition effects of X and Z parameters coupled in the charge transfer reaction, the diverging frequencies fXZ and fXZ are phenomenologically defined. The locations of fXZ and fXZ can indicate the depth and breadth of the charge transfer reaction affected by the parameters X and Z. The non-existence of fXZ and fXZ indicates that the parameter X or Z can affect the charge transfer reaction over the whole frequency range. With the help of characteristic frequency and diverging frequency, the effects of electrode kinetic and microstructure parameters on the charge transfer reaction in porous electrodes are studied; on the other hand, the shape change and trend evolution of the impedance responses for porous electrodes are analyzed. The research results in this paper should be able to provide theoretical basis for system simulation and system identification of impedance spectroscopy, technical support for competitive analysis of charge transfer reaction in porous electrodes, and diagnostic tool for optimal design of electrochemical energy storage system.
Graphical Abstract
Keywords
porous electrode, charge transfer reaction, electrochemical impedance spectroscopy, characteristic frequencies, diverging frequencies
Publication Date
2021-10-28
Online Available Date
2021-02-09
Revised Date
2020-12-25
Received Date
2020-11-26
Recommended Citation
Xiang Li, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jia Wang, Yang Liu, Yu-Feng Zhao, Juan Wang, Jiu-Jun Zhang.
Fundamentals of Electrochemical Impedance Spectroscopy for Macrohomogeneous Porous Electrodes[J]. Journal of Electrochemistry,
2021
,
27(5): 467-497.
DOI: 10.13208/j.electrochem.201126
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol27/iss5/4
References
[1] Newman J, Tiedemann W. Porous-electrode theory with battery applications[J]. AICHE J., 1975, 21(1): 25-41.
doi: 10.1002/(ISSN)1547-5905 URL
[2] Wang Y, Fu X W, Zheng M, Zhong W H, Cao G Z. Strategies for building robust traffic networks in advanced energy storage devices: a focus on composite electrodes[J]. Adv. Mater., 2019, 31(6): 1804204.
doi: 10.1002/adma.v31.6 URL
[3] Panabiere E, Badot J C, Dubrunfaut O, Etiemble A, Lestriez Bernard. Electronic and ionic dynamics coupled at solid-liquid electrolyte interfaces in porous nanocomposites of carbon black, poly(vinylidene fluoride), and γ-alumina[J]. J. Phys. Chem. C, 2017, 121(15): 8364-8377.
doi: 10.1021/acs.jpcc.6b12204 URL
[4] Javier A E, Patel S N, Hallinan D T, Srinivasan V, Balsara N P. Simultaneous electronic and ionic conduction in a block copolymer: application in lithium battery electrodes[J]. Angew. Chem. Int. Ed., 2011, 50(42): 9848-9851.
doi: 10.1002/anie.v50.42 URL
[5] Macdonald J R, Barsoukov E. Impedance spectroscopy: theory, experiment, and applications[J]. History, 2005, 1(8): 1-13.
doi: 10.1111/hist.1916.1.issue-1 URL
[6] Zhuang Q C, Yang Z, Zhang L, Cui Y H. Research progress on diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Prog. Chem., 2020, 32(6): 761-791.
[7] Huang Q A, Hui R S, Wang B W, Zhang J J. A review of AC impedance modeling and validation in SOFC diagnosis[J]. Electrochim. Acta, 2007, 52(28): 8144-8164.
doi: 10.1016/j.electacta.2007.05.071 URL
[8] Tang Z, Huang Q A, Wang Y J, Zhang F Z, Li W H, li A J, Zhang L, Zhang J J. Recent progress in the use of electrochemical impedance spectroscopy for the measurement, monitoring, diagnosis and optimization of proton exchange membrane fuel cell performance[J]. J. Power Sources, 2020, 468: 228361.
doi: 10.1016/j.jpowsour.2020.228361 URL
[9] Huang Q A(黄秋安), Li W H(李伟恒), Tang Z P(汤哲鹏), Zhang F Z(张方舟), Li A J(李爱军), Zhang J J(张久俊). Fundamentals of electrochemical impedance spectroscopy[J]. Chin. J. Nat.(自然杂志), 2020, 42(1): 12-26.
[10] Huang Q A, Shen Y, Huang Y H, Zhang L, Zhang J J. Impedance characteristics and diagnoses of automotive lithium-ion batteries at 7.5% to 93.0% state of charge[J]. Electrochim. Acta, 2016, 219: 751-765.
doi: 10.1016/j.electacta.2016.09.154 URL
[11] Robert D L. Electrochemical response of porous and rough electrodes[M]// Advances in electrochemistry and electrochemical engineering, Interscience Publishers—J. Wiley and Son, Inc., New York, 1967, 6: 329-397.
[12] Paasch G, Micka K, Gersdorf P. Theory of the electrochemical impedance of macrohomogeneous porous electrodes[J]. Electrochim. Acta, 1993, 38(18): 2653-2662.
doi: 10.1016/0013-4686(93)85083-B URL
[13] Lasia A. Impedance of porous electrodes[J]. J. Electroanal. Chem., 1995, 397(1-2): 27-33.
doi: 10.1016/0022-0728(95)04177-5 URL
[14] Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Compte A . Anomalous transport effects in the impedance of porous film electrodes[J]. Electrochem. Commun., 1999, 1(9): 429-435.
doi: 10.1016/S1388-2481(99)00084-3 URL
[15] Li Y(李雨), Yang W M(杨维明), Huang Q A(黄秋安), Li W H(李伟恒), Li X F(李喜飞), Zhang J J(张久俊). Simulation of Warburg impedance spectra under finite diffusion boundary conditions for porous energy electrode materials[J]. J. Xi'an Univ. Technol.(西安理工大学学报), 2019, 35(2): 138-146.
[16] Meyers J P, Doyle M, Darling R M, Newman J. The impedance response of a porous electrode composed of intercalation particles[J]. J. Electrochem. Soc., 2000, 147(8): 2930-2940.
doi: 10.1149/1.1393627 URL
[17] Tröltzsch U, Kanoun O. Generalization of transmission line models for deriving the impedance of diffusion and porous media[J]. Electrochim. Acta, 2012, 75: 347-356.
doi: 10.1016/j.electacta.2012.05.014 URL
[18] Siroma Z, Fujiwara N, Yamazaki S, Asahi M, Nagai T, Ioroi T. Mathematical solutions of comprehensive variations of a transmission-line model of the theoretical impedance of porous electrodes[J]. Electrochim. Acta, 2015, 160: 313-322.
doi: 10.1016/j.electacta.2015.02.065 URL
[19] Huang J, Zhang J B. Theory of impedance response of porous electrodes: simplifications, inhomogeneities, non-stationarities and applications[J]. J. Electrochem. Soc., 2016, 163(9): A1983-A2000.
doi: 10.1149/2.0901609jes URL
[20] Zhang Z M, Gao Y, Chen S L, Huang J. Understanding dynamics of electrochemical double layers via a modified concentrated solution theory[J]. J. Electrochem. Soc., 2020, 167(1): 013519.
doi: 10.1149/2.0192001JES URL
[21] Zhuang Q C(庄全超), Yang Z(杨梓), Zhang L(张蕾), Cui Y H(崔艳华). Research progress on diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Prog. Chem.(化学进展), 2020, 32(6): 761-791.
doi: 10.7536/PC191116
[22] Huang J, Gao Y, Luo J, Wang S S, Li C K, Chen S L, Zhang J B. Editors’ choice-Review-Impedance response of porous electrodes: Theoretical framework, physical models and applications[J]. J. Electrochem. Soc., 2020, 167(16): 166503.
doi: 10.1149/1945-7111/abc655 URL
[23] Zhu C B, Usiskin R E, Yu Y L, Maier J. The nanoscale circuitry of battery electrodes[J]. Science, 2017, 358(6369): eaao2808.
doi: 10.1126/science.aao2808 URL
[24] Ramadesigan V, Northrop P W C, De S, Santhanagopalan S, Braatz R D, Subramanian V R. Modeling and simulation of lithium-ion batteries from a systems engineering perspective[J]. J. Electrochem. Soc., 2012, 159(3): R31-R45.
doi: 10.1149/2.018203jes URL
[25] Huang Q A, Li Y, Tsay K, Sun C W. Multi-scale impedance model for supercapacitor porous electrodes: Theoretical prediction and experimental validation[J]. J. Power Sour-ces, 2018, 400: 69-86.
[26] Huang Q A, Park S M. Unified model for transient faradaic impedance spectroscopy: theory and prediction[J]. J. Phys. Chem. C, 2012, 116(32): 16939-16950.
doi: 10.1021/jp306140w URL
[27] Mei W X, Chen H D, Sun J H, Wang Q S. The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical-thermal coupling model[J]. Sustain. Energy Fuels, 2019, 3(1): 148-165.
[28] Yoon S H, Jang J H, Ka B H, Oh S M. Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness[J]. Ele-ctrochim. Acta, 2005, 50(11): 2255-2262.
[29] Honda K, Rao T N, Tryk D A, Fujishima A. Impedance characteristics of the nanoporous honeycomb diamond electrodes for electrical double-layer capacitor applications[J]. J. Electrochem. Soc., 2001, 148(7): A668-A679.
doi: 10.1149/1.1373450 URL
[30] Lasia A. Impedance of porous electrodes[J]. J. Electroanal. Chem., 1995, 397(1-2): 27-33.
doi: 10.1016/0022-0728(95)04177-5 URL
[31] Jurczakowski R, Hitz C, Lasia A. Impedance of porous Au based electrodes[J]. J. Electroanal. Chem., 2004, 572(2): 355-366.
doi: 10.1016/j.jelechem.2004.01.008 URL
[32] Meyers J P, Doyle M, Darling R M, Newman J. The im-pedance response of a porous electrode composed of intercalation particles[J]. J. Electrochem. Soc., 2000, 147(8): 2930-2940.
doi: 10.1149/1.1393627 URL
[33] Guo Q Z, Subramanian V R, Weidner J W, White R E. Estimation of diffusion coefficient of lithium in carbon using AC impedance technique[J]. J. Electrochem. Soc., 2002, 149(3): A307-A318.
doi: 10.1149/1.1447224 URL
[34] Yu P, Popov B N, Ritter J A, et al. Determination of the lithium ion diffusion coefficient in graphite[J]. J. Electro-chem. Soc., 1999, 146(1): 8-14.
doi: 10.1149/1.1391556 URL
[35] Ji F, Wang L, Yang J, Wu X. Highly compact, free-standing porous electrodes from polymer-derived nanoporous carbons for efficient electrochemical capacitive deionization[J]. J. Mater. Chem. A, 2019, 7(4): 1768-1778.
doi: 10.1039/C8TA10268F URL
[36] Lanzi O, Landau U. Effect of pore structure on current and potential distributions in a porous electrode[J]. J. Ele-ctrochem. Soc., 1990, 137(2): 585-593.
[37] Lee S B, Pathak C, Ramadesigan V, Gao W Z, Subramanian V R. Direct, efficient, and real-time simulation of physics-based “battery models for stand-alone PV-battery microgrids[J]. J. Electrochem. Soc., 2017, 164(11): E3026-E3034.
doi: 10.1149/2.0031711jes URL
[38] Deng Z W, Deng H, Yang L, Cai Y S, Zhao X W. Implementation of reduced-order physics-based model and multi-parameters identification strategy for lithium-ion battery[J]. Energy, 2017, 138: 509-519.
doi: 10.1016/j.energy.2017.07.069 URL
[39] Seok D, Jeong Y, Han K, Yoon D Y, Sohn H. Recent pro-gress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy[J]. Sustainability, 2019, 11(13): 3694.
doi: 10.3390/su11133694 URL
[40] Jeerapan I, Ma N. Challenges and opportunities of carbon nanomaterials for biofuel cells and supercapacitors: personalized energy for futuristic self-sustainable devices[J]. C—Journal of Carbon Research, 2019, 5(4): 62.
doi: 10.3390/c5040062 URL
[41] Zhang S S, Xu K, Jow T R. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochim. Acta, 2006, 51(8-9): 1636-1640.
doi: 10.1016/j.electacta.2005.02.137 URL
[42] Itagaki M, Hatada Y, Shitanda I, Watanabe K. Complex impedance spectra of porous electrode with fractal structure[J]. Electrochim. Acta, 2010, 55(21): 6255-6262.
doi: 10.1016/j.electacta.2009.10.016 URL
[43] Yoo H D, Jang J H, Ryu J H, Park Y, Oh S M. Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors[J]. J. Power Sour-ces, 2014, 267: 411-420.
Included in
Analytical Chemistry Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons