•  
  •  
 

Corresponding Author

Shuo-Zhen Hu(shuozhen.hu@ecust.edu.cn)

Abstract

Glyoxylic acid with the dual characteristics of acid and aldehyde is an important chemical raw material and organic synthesis intermediate, which is extensively used in the perfumery, pharmaceutical and fine chemical industries. A family of symmetric quaternary ammonium hydroxides (QAHs) with different alkyl chain lengths was used as the additives in generating glyoxylic acid from oxalic acid electroreduction reaction (OAER). The effects of alkyl chain length on OAER and the corresponding side reaction, i.e., hydrogen evolution reaction (HER), were investigated. Linear sweep voltammetric (LSV) results showed that the adsorption of the additives suppressed more on the HER than that on OAER, resulted in improving the current efficiency of OAER. As the alkyl chain length of QAH increased, the suppression effect on HER was more obvious. The effect of additives on oxalic acid diffusion was studied by chronoamperometry (CA). With the increase in the alkyl chain length of the QAH additives, the diffusion coefficient of oxalic acid increased first and then decreased. The constant-current electrolysis results showed that the additives could effectively improve the current efficiency of the OAER, which was highly related to the alkyl chain length of QAHs. The LSV, CA and electrolysis results indicate that the suppression effect of QAHs adsorption on HER is the main reason for the improvement of current efficiency. In this study, tetrabutylammonium hydroxide (TBAH) is the best additive to increase the current efficiency of generating glyoxylic acid from oxalic acid.

Graphical Abstract

Keywords

oxalic acid, electroreduction, glyoxylic acid, symmetrical quaternary ammonium additive, alkyl chain length

Publication Date

2021-10-28

Online Available Date

2020-11-12

Revised Date

2020-10-30

Received Date

2020-09-05

References

[1] Abdulwahed M, Mamoly L, Bosnali W. A simple spectrophotometric method for determination of glyoxylic acid in its synjournal mixture[J]. Int. J. Anal. Chem., 2020: 5417549.

[2] Niu Y L, Xu Z, Li M, Li R F. Oxidation of glyoxal to glyoxylic acid by oxygen over V2O5/C catalyst[J]. Chin. Chem. Lett., 2008, 19(2): 245-248.
doi: 10.1016/j.cclet.2007.11.015 URL

[3] Hermans S, Thiltges F, Deffenez A, Devillers M. Molybdenum oxoanions as dispersing agents in the preparation of Pd/C catalysts for the selective oxidation of glyoxal[J]. Catal. Lett., 2012, 142(5): 521-530.
doi: 10.1007/s10562-012-0804-6 URL

[4] Pope F D, Gallimore P J, Fuller S J. Ozonolysis of maleic acid aerosols: Effect upon aerosol hygroscopicity, phase and mass[J]. Environ. Sci. Technol., 2010, 44(17): 6656-6660.
doi: 10.1021/es1008278 pmid: 20701273

[5] Pozdniakov M A, Zhuk I V, Lyapunova M V, Salikov A S, Botvin V V, Filimoshkin A G. Glyoxylic acid synjournal, isolation, and crystallization[J]. Russ. Chem. Bull., 2019, 68(3): 472-479.
doi: 10.1007/s11172-019-2442-2 URL

[6] Pierre G, Ziade A. The oxidation of glyoxal and ethylene glycol on platinum containing in aqueous acid mediums some metal salts[J]. Electrochim. Acta, 1987, 32(4): 601-606.
doi: 10.1016/0013-4686(87)87048-2 URL

[7] Kimura M, Kobayashi K, Yamamoto Y, Sawaki Y. Electrooxidative pinacol-type rearrangement of β-hydroxy sulfides. Efficient C-S cleavage mediated by chloride ion oxidation[J]. Tetrahedron, 1996, 52(12): 4303-4310.
doi: 10.1016/0040-4020(96)00130-5 URL

[8] Danly D E. Adiponitrile via improved EHD[J]. Hydrocarb Process, 1981, 60(4): 161-164.

[9] Scott K. Electrolytic reduction of oxalic acid to glyoxylic acid: A problem of electrode deactivation[J]. Chem. Eng. Res. Des., 1986, 64(4): 266-271.

[10] Ochoa J R, Diego A D, Santa-Olalla J. Electrosynjournal of glyoxylic acid using a continuously electrogenerated lead cathod[J]. J. Appl. Electrochem., 1993, 23(9): 905-909.
doi: 10.1007/BF00251025 URL

[11] Chen B A, Xu J, Wang L M, Song L F, Wu S Y. Synjournal of quaternary ammonium salts based on diketopyrrolopyrroles skeletons and their applications in copper electroplating[J]. ACS Appl. Mater. Inter., 2017, 9(8): 7793-7803.
doi: 10.1021/acsami.6b15400 URL

[12] Xu J, Chen B, Lv J, Chang D D, Niu D F, Hu S Z, Zhang X S, Xin Z, Wang L M. Aryl modification of diketopyrrolopyrrole-based quaternary ammonium salts and their applications in copper electrodeposition[J]. Dyes Pigments, 2019, 170: 107559.
doi: 10.1016/j.dyepig.2019.107559 URL

[13] Miao Z W, Pei F B, Liu Z W, Zhang Z, Yu R J, Liu R S. Preparation of highly purity tetrabutyl ammonium hydroxide using a novel method of electro-electrodialysis: The study on mass transfer process and influencing factors[J]. J. Membrane. Sci., 2018, 567: 281-289.
doi: 10.1016/j.memsci.2018.09.045 URL

[14] Huang X, Tan L Q, Zhang L, Li C P, Wei Z D. Coverage-dependent acrylonitrile adsorption and electrochemical reduction kinetics on Pb electrode[J]. Chem. Eng. J., 2020, 382: 123006.
doi: 10.1016/j.cej.2019.123006 URL

[15] Blanco D E, Dookhith A Z, Modestino M A. Enhancing selectivity and efficiency in the electrochemical synjournal of adiponitrile[J]. React. Chem. Eng., 2019, 4(1): 8-16.
doi: 10.1039/C8RE00262B URL

[16] Goodridge F, Lister K, Plimley R E. Scale-up studies of the electrolytic reduction of oxalic to glyoxylic acid[J]. J. Appl. Electrochem., 1980, 10(1): 55-60.
doi: 10.1007/BF00937338 URL

[17] Zhou Y L, Zhang X S, Dai Y C, Yuan W K. Studies on chemical activators for electrode I: Electrochemical activation of deactivating cathode for oxalic acid reduction[J]. Chem. Eng. Sci., 2003, 58(3-6): 1021-1027.
doi: 10.1016/S0009-2509(02)00643-7 URL

[18] Jin L(金玲), Zhang X S(张新胜). Additives structure in electroreduction of oxalic acid[J]. CIESC Journal(化工学报), 2010, 61(S1): 86-90.

[19] Jin L, Pang C X, Zhang X S, Niu L, Yuan W K. Determination of glyoxylic acid in organic electrosynjournal using the differential pulse polarography[J]. Asian J. Chem., 2013, 25(18): 10102-10106.
doi: 10.14233/ajchem URL

[20] Wade.R C, Guilbault L J. Electrolytic method for producing quaternary ammonium hydroxides: American, US4394226-A1[P]. 1983-7-19.

[21] Yang J(杨娇), Zhang X S(张新胜). Preparation of electronic tetrabutylammonium hydroxide by ion-exchange membrane electrolysis[J]. CIESC Journal(化工学报), 2010, 61(S1): 77-81.

[22] Campbell C R, Spiegelhalter R R. Preparation of quaternary ammonium hydroxides by electrolysis: American, US43943265-A1[P]. 1968-9-17.

[23] Scott K. The role of remperatre in oxalic acid electroreduction[J]. Electrochim. Acta, 1992, 37(8): 1381-1388.
doi: 10.1016/0013-4686(92)87011-N URL

[24] Liu X(刘欣), Li Z Y(李宇展), Hu R S(胡瑞省), Gu D P(顾登平). Studies on the mechanism of electroreduction of oxalic acid[J]. J. Electrochem.(电化学), 2004, 10(1): 41-45.

[25] Pickett D J, Yap K S. A study of the production of glyoxylic acid by the electrochemical reduction of oxalic acid solutions[J]. J. Appl. Electrochem., 1974, 4: 17-23.
doi: 10.1007/BF00615902 URL

[26] Fan Y H, Haseltine J. Interactive delocalizations that control an aqueous organic equilibrium[J]. Tetrahedron Lett., 1996, 37(52): 9279-9282.
doi: 10.1016/S0040-4039(97)82941-3 URL

[27] Liu N N, Senthil R A, Zhang X, Pan J Q, Sun Y Z, Liu X G. A green and cost-effective process for recovery of high purity α-PbO from spent lead acid batteries[J]. J. Clean. Prod., 2020, 267: 122107.
doi: 10.1016/j.jclepro.2020.122107 URL

[28] Ijomah M N C. Electrochemical behavior of some lead alloys[J]. J. Electrochem. Soc., 1987, 134(12): 2960-2966.
doi: 10.1149/1.2100323 URL

[29] Zhang B, Zhong J H, Li W J, Dai Z Y, Zhang B, Cheng Z M. Transformation of inert PbSO4 deposit on the negative electrode of a lead-acid battery into its active state[J]. J. Power Sources, 2010, 195(13): 4338-4343.
doi: 10.1016/j.jpowsour.2010.01.038 URL

[30] Kawasaki A, Nishihama S, Yoshizuka K. Adsorption of tetraalkyl ammonium hydroxide with mesoporous silica[J]. Sep. Sci. Technol., 2012, 47(9): 1356-1360.
doi: 10.1080/01496395.2012.672522 URL

[31] Marcus Y. Tetraalkylammonium ions in aqueous and non-aqueous solutions[J]. J. Solution Chem., 2008, 37(8): 1071-1098.
doi: 10.1007/s10953-008-9291-1 URL

[32] Anson F C. Chronocoulometry: A convenient, rapid and reliable technique for detection and determination of adsorbed reactants[J]. J. Chem. Educ., 1983, 60(4): 293-296.
doi: 10.1021/ed060p293 URL

[33] Golabi S M, Irannejad L. Preparation and electrochemical study of fisetin modified glassy carbon electrode. Application to the determination of NADH and ascorbic acid[J]. Electroanalysis, 2005, 17(11): 985-996.
doi: 10.1002/(ISSN)1521-4109 URL

[34] Raoof J B, Ojani R, Rashid-Nadimi S. Preparation of polypyrrole/ferrocyanide films modified carbon paste electrode and its application on the electrocatalytic determination of ascorbic acid[J]. Electrochim. Acta, 2004, 49(2): 271-280.
doi: 10.1016/j.electacta.2003.08.009 URL

[35] Zhu J L, Zhou Y H, Gao C Q. Influence of surfactants on electrochemical behavior of zinc electrodes in alkaline solution[J]. J. Power Sources, 1998, 72: 231-235.
doi: 10.1016/S0378-7753(97)02705-5 URL

[36] Seo D W, Sarker S, Nath N C D, Choi S W, Ahammad A J S, Lee J J, Kim W G. Synjournal of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells[J]. Electrochim. Acta, 2010, 55(4): 1483-1488.
doi: 10.1016/j.electacta.2009.05.007 URL

[37] Dehmlow E V. Phase-transfer catalyzed two-phase reactions in preparative organic chemistry[J]. Angew. Chem. Int. Ed., 1974, 13(3): 170-179.
doi: 10.1002/(ISSN)1521-3773 URL

[38] Zhao C T(赵崇涛), Zhu Z S(朱则善). Study on synthesizing of 2-methylbutanoic acid by indirect electrooxidation[J]. J. Electrochem.(电化学), 1999, 5(3): 310-313.

[39] Shabestary N, Khazaeli S, Hickman R. Phase-transfer catalytic reaction: A physical chemistry laboratory experiment[J]. J. Chem. Educ., 1998, 75(11): 1470-1472.
doi: 10.1021/ed075p1470 URL

[40] Makosza M, Fedorynski M. Phase transfer catalysis - basic principles, mechanism and specific features[J]. Curr. Catal., 2012, 1(2): 79-87.
doi: 10.2174/2211544711201020079 URL

[41] Davies. J A. Synthetic coordination chemistry: Principles and practice[M]. Ohio: World Science Publishing Co. Ptc. Ltd., 1996: 362.

[42] Chen W C, Ho B H. Diffusion coefficients of acrylic mono-mers in poly(methyl methylacrylate)[J]. J. Polym. Res., 1998, 5(3): 187-191.
doi: 10.1007/s10965-006-0055-6 URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.