Abstract
Chromium oxide (Cr8O21) cathode material for lithium batteries was synthesized by thermal decomposition of chromium trioxide (CrO3) at high temperature. The electrochemical properties of chromium oxide depended on the time and temperature during the heat treatment. Pure phase chromium oxide was prepared, and the effects of heat treatment time on the structures and electrochemical properties of Cr8O21 were systematically studied. The first discharge mechanism of chromium oxide in lithium batteries was explored, and the results were similar to that in lithium-sulfur batteries. The crystal phases and electrochemical properties of the prepared chromium oxide were analyzed by TGA, XRD, SEM, EDS, ICP, EIS techniques and constant current discharge measurement. The results show that heat treatment time had an important impact. Extending the heat treatment time was beneficial to improve the electrochemical properties of the material. The less the amount of residual CrO3, the better the electrochemical performance. The severe oxidation reaction between CrO3 and the electrolyte caused the electrode to be corroded. The material obtained in 48 h exhibited excellent performance, complete crystallization, good morphology, and low electrochemical impedance. At a constant discharge current of 0.05 mA, the specific capacity of the material reached 383.26 mAh·g-1 with the specific energy of 1153.83 mWh·g-1 and the average discharge voltage of 3.01 V. This study provides an effective way to prepare pure phase chromium oxide and proves its potential application in the field of lithium batteries.
Graphical Abstract
Keywords
lithium battery, cathode material, Cr8O21, chromium oxide, heat treatment time
Publication Date
2021-12-28
Online Available Date
2021-05-04
Revised Date
2021-04-14
Received Date
2021-01-25
Recommended Citation
Jiu-Kang Teng, Qing-Jie Wang, Liang Zhang, Hong-Mei Zhang, Xiao-Tao Chen, Peng Zhang, Jin-Bao Zhao.
Influence of Heat Treatment Time on Cathode Material Cr8O21 for Lithium Battery[J]. Journal of Electrochemistry,
2021
,
27(6): 689-697.
DOI: Chromium oxide (Cr8O21) cathode material for lithium batteries was synthesized by thermal decomposition of chromium trioxide (CrO3) at high temperature. The electrochemical properties of chromium oxide depended on the time and temperature during the heat treatment. Pure phase chromium oxide was prepared, and the effects of heat treatment time on the structures and electrochemical properties of Cr8O21 were systematically studied. The first discharge mechanism of chromium oxide in lithium batteries was explored, and the results were similar to that in lithium-sulfur batteries. The crystal phases and electrochemical properties of the prepared chromium oxide were analyzed by TGA, XRD, SEM, EDS, ICP, EIS techniques and constant current discharge measurement. The results show that heat treatment time had an important impact. Extending the heat treatment time was beneficial to improve the electrochemical properties of the material. The less the amount of residual CrO3, the better the electrochemical performance. The severe oxidation reaction between CrO3 and the electrolyte caused the electrode to be corroded. The material obtained in 48 h exhibited excellent performance, complete crystallization, good morphology, and low electrochemical impedance. At a constant discharge current of 0.05 mA, the specific capacity of the material reached 383.26 mAh·g-1 with the specific energy of 1153.83 mWh·g-1 and the average discharge voltage of 3.01 V. This study provides an effective way to prepare pure phase chromium oxide and proves its potential application in the field of lithium batteries.
Available at: https://jelectrochem.xmu.edu.cn/journal/vol27/iss6/5
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons