Abstract
Three-dimensional (3D) nanostructural Flower-like cobalt sulfide (CoS) on flexible self-supporting graphene tape electrode (GTE) with remarkably electrocatalytic activity toward glucose was successfully prepared by electrodeposition. Structural characterizations revealed that the electrodeposited CoS was highly dispersed on GTE as an active material. The fabricated binder-free and self-standing CoS/GTE shows a good linear response in the range of 0.025 ~ 1.0 mmol·L-1, reaching a high glucose sensitivity value of 323.3 μA·(mmol·L -1)-1·cm-2 and a low detection limit of 8.5 μmol·L -1 (S/N = 3). Moreover, the as-prepared sensor was well applied for glucose determination in human serum. Thus, the self-supporting, binder-free, low-cost sensor has good potential as a promising device for practical quantitative analysis of glucose in human serum.
Graphical Abstract
Keywords
flexible electrode, flower-like CoS, electrodeposition, glucose sensor
Publication Date
2022-01-28
Online Available Date
2021-08-03
Revised Date
2021-06-30
Received Date
2021-04-21
Recommended Citation
Jiang Li, Zuo-Peng Li, Yun-Feng Bai, Su-Xing Luo, Yong Guo, Ya-Yan Bao, Rong Li, Hai-Yan Liu, Feng Feng.
A Flexible Enzymeless Glucose Sensor via Electrodepositing 3D Flower-like CoS onto Self-Supporting Graphene Tape Electrode[J]. Journal of Electrochemistry,
2022
,
28(1): 2104211.
DOI: 10.13208/j.electrochem.210421
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss1/4
References
[1]
Rahman M M, Ahammad A J S, Jin J H, Ahn S J, Lee J J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides[J]. Sensors, 2010, 10(5): 4855-4866.
doi: 10.3390/s100504855
URL
[2]
Desmet C, Marquette C A, Blum L J, Doumèche B. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells[J]. Biosens. Bioelectron. 2016, 76(SI): 145-163.
doi: 10.1016/j.bios.2015.06.052
URL
[3]
Gabriel E F M, Garcia P T, Cardoso T M G, Lopes F M, Martins F T, Coltro W K T. Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices[J]. Analyst, 2016, 141(15): 4749-4756.
doi: 10.1039/c6an00430j
pmid: 27272206
[4]
Hwang D W, Lee S, Seo M, Chung T D. Recent advances in electrochemical non-enzymatic glucose sensors - a review[J]. Anal. Chim. Acta, 2018, 1033: 1-34.
doi: 10.1016/j.aca.2018.05.051
URL
[5]
Qiu H W, Xu S C, Jiang S Z, Li Z, Chen P X, Gao S S, Zhang C, Feng D J. A novel graphene-based tapered optical fiber sensor for glucose detection[J]. Appl. Surf. Sci., 2015, 329: 390-395.
doi: 10.1016/j.apsusc.2014.12.093
URL
[6]
Nicholas D, Logan K A, Sheng Y J, Gao J H, Farrell S, Dixon D, Callan B, McHale A P, Callan J F. Rapid paper based colorimetric detection of glucose using a hollow microneedle device[J]. Int. J. Pharm., 2018, 547(1-2): 244-249.
doi: 10.1016/j.ijpharm.2018.06.002
URL
[7]
Shoji A, Takahashi Y, Osato S, Sugawara M. An enzyme-modified capillary as a platform for simultaneous fluorometric detection of D-glucose and L-lactate[J]. Pharm. Biomed. Anal., 2019, 163: 1-8.
doi: 10.1016/j.jpba.2018.09.028
URL
[8]
Zhu C Z, Yang G H, Li H, Du D, Lin Y H. Electrochemical sensors and biosensors based on nanomaterials and nanostructures[J]. Anal. Chem., 2015, 87(1): 230-249.
doi: 10.1021/ac5039863
URL
[9]
Mohamad N R, Marzuki N H C, Buang N A, Huyop F, Wahab R A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes[J]. Biotechnol. Biotechnol. Equip., 2015, 29(2): 205-220.
doi: 10.1080/13102818.2015.1008192
URL
[10]
Yu Y Y, Yang Y, Gu H, Zhou T S, Shi G Y. Size-tunable Pt nanoparticles assembled on functionalized ordered mesoporous carbon for the simultaneous and on-line detection of glucose and L-lactate in brain microdialysate[J]. Biosens. Bioelectron., 2013, 41: 511-518.
doi: 10.1016/j.bios.2012.09.055
URL
[11]
Ye J S, Chen C W, Lee C L. Pd nanocube as non-enzymatic glucose sensor[J]. Sensor Actuat. B - Chem., 2015, 208: 569-574.
doi: 10.1016/j.snb.2014.11.091
URL
[12] Malhotra S, Tang Y J, Varshney P K. Non-enzymatic glucose sensor based on electrodeposition of platinum particles on polyaniline modified Pt electrode[J]. Anal. Bioanal. Electrochem., 2018, 10(6): 699-715.
[13]
Wang R L, Liang X Y, Liu H Y, Cui L, Zhang X Y, Liu C J. Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles[J]. Microchim. Acta, 2018, 185(7): 339.
doi: 10.1007/s00604-018-2866-7
URL
[14]
Shim K, Lee W C, Park M S, Shahabuddin M, Yamauchi Y, Hossain M S A, Shim Y B, Kim J H. Au decorated core-shell structured Au@Pt for the glucose oxidation reaction[J]. Sensor Actuat. B - Chem., 2019, 278: 88-96.
doi: 10.1016/j.snb.2018.09.048
URL
[15]
Yang J W, Liang X Y, Cui L, Liu H Y, Xie J B, Liu W X. A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects[J]. Biosens. Bioelectron., 2016, 80: 171-174.
doi: 10.1016/j.bios.2016.01.056
URL
[16]
Sheng Q, Mei H, Wu H M, Zhang X H, Wang S F. A highly sensitive non-enzymatic glucose sensor based on PtxCo1-x/C nanostructured composites[J]. Sensor Actuat. B - Chem., 2015, 207: 51-58.
doi: 10.1016/j.snb.2014.09.079
URL
[17]
Koskun Y, Savk A, Sen B, Sen F. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites[J]. Anal. Chim. Acta, 2018, 1010: 37-43.
doi: 10.1016/j.aca.2018.01.035
URL
[18]
Lai C H, Lu M Y, Chen L J. Metal sulfide nanostructures: synjournal, properties and applications in energy conversion and storage[J]. Mater. Chem., 2012, 22(1): 19-30.
doi: 10.1039/C1JM13879K
URL
[19]
Wang J H, Cui W, Liu Q, Xing Z C, Asiri A M, Sun X P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Adv. Mater., 2016, 28(2): 215-230.
doi: 10.1002/adma.201502696
URL
[20]
Wu W Q, Yu B B, Wu H M, Wang S F, Xia Q H, Ding Y. Synjournal of tremella-like CoS and its application in sensing of hydrogen peroxide and glucose[J]. Mater. Sci. Eng. C, 2017, 70: 430-443.
doi: 10.1016/j.msec.2016.08.084
URL
[21]
Qu P P, Gong Z N, Cheng H Y, Xiong W, Wu X, Pei P, Zhao R F, Zeng Y, Zhu Z H. Nanoflower-like CoS-decorated 3D porous carbon skeleton derived from rose for a high performance nonenzymatic glucose sensor[J]. RSC Adv., 2015, 5(129): 106661-106667.
doi: 10.1039/C5RA22495K
URL
[22]
Meng A, Sheng L Y, Zhao K, Li Z J. A controllable honeycomb-like amorphous cobalt sulfide architecture directly grown on the reduced graphene oxide-poly(3,4-ethylenedioxythiophene) composite through electro-deposition for non-enzyme glucose sensing[J]. Mater. Chem. B, 2017, 5(45): 8934-8943.
doi: 10.1039/C7TB02482G
URL
[23]
Sivakumar M, Sakthivel M, Chen S M. Simple synjournal of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples[J]. J. Colloid Interface Sci., 2017, 490: 719-726.
doi: 10.1016/j.jcis.2016.11.094
URL
[24]
Kang Z, Li Y, Cao S Y, Zhang Z H, Guo H J, Wu P W, Zhou L X, Zhang S C, Zhang X M, Zhang Y. 3D graphene foam/ZnO nanorods array mixed-dimensional heterostructure for photoelectrochemical biosensing[J]. Inorg. Chem. Front., 2018, 5(2): 364-369.
doi: 10.1039/C7QI00669A
URL
[25]
Niu J A, Domenech-Carbo A, Primoa A, Garcia H. Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation[J]. RSC Adv., 2019, 9(1): 99-106.
doi: 10.1039/C8RA08745H
URL
[26]
Han W J, Ren L, Gong L J, Qi X, Liu Y D, Yang L W, Wei X L, Zhong J X. Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities[J]. ACS Sustainable Chem. Eng., 2014, 2(4): 741-748.
doi: 10.1021/sc400417u
URL
[27]
Chen D M, Yang J J, Zhu Y, Zhang Y M, Zhu Y F. Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the enhanced photoelectrocatalytic performance[J]. Appl. Catal. B - Environ., 2018, 233: 202-212.
doi: 10.1016/j.apcatb.2018.04.004
URL
[28]
Chen D, Zhang H, Liu Y, Li J H. Graphene and its deriva-tives for the development of solar cells, photoelectrochemical, and photocatalytic applications[J]. Energy Environ. Sci., 2013, 6(5): 1362-1387.
doi: 10.1039/c3ee23586f
URL
[29]
Baig N, Saleh T A. Electrodes modified with 3D graphene composites: a review on methods for preparation, properties and sensing applications[J]. Microchim. Acta, 2018, 185(6): 283.
doi: 10.1007/s00604-018-2809-3
URL
[30]
Ito Y, Tanabe Y, Sugawara K, Koshino M, Takahashi T, Tanigaki K., Aokighi H, Chen M W. Three-dimensional porous graphene networks expand graphene-based electronic device applications[J]. Phys. Chem. Chem. Phys., 2018, 20(9): 6024-6033.
doi: 10.1039/C7CP07667C
URL
[31]
Wang L, Yu J, Zhang Y Y, Yang H, Miao L F, Song Y H. Simple and large-scale strategy to prepare flexible graphene tape electrode[J]. ACS Appl. Mater. Interfaces, 2017, 9(10): 9089-9095.
doi: 10.1021/acsami.6b14624
URL
[32]
Lange B, Lovric M, Scholz F. The catalytic action of adsorbed thiocyanate ions and thiourea in the electron transfer from glassy carbon to solid copper(I) selenide and copper(I) sulfide particles[J]. Electroanal. Chem., 1996, 418(1-2): 21-28.
doi: 10.1016/S0022-0728(96)04850-4
URL
[33]
Nan K K, Du H F, Su L, Li C M. Directly electrodeposited cobalt sulfide nanosheets as advanced catalyst for oxygen evolution reaction[J]. ChemistrySelect, 2018, 3(25): 7081-7088.
doi: 10.1002/slct.201801482
URL
[34]
Gao R, Liu L, Hu Z B, Zhang P, Cao X Z, Wang B Y, Liu X F. The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li-O2 batteries[J]. Mater. Chem. A, 2015, 3(34): 17598-17605.
doi: 10.1039/C5TA03885E
URL
[35]
Mao M L, Jiang L, Wu L C, Zhang M, Wang T H. The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries[J]. Mater. Chem. A, 2015, 3(25): 13384-13389.
doi: 10.1039/C5TA01501D
URL
[36]
Shi J H, Li X C, He G H, Zhang L, Li M. Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors[J]. Mater. Chem. A, 2015, 3(41): 20619-20626.
doi: 10.1039/C5TA04464B
URL
[37]
Bahadur S, Gong D L. The investigation of the action of fillers by XPS studies of the transfer films of PEEK and its composites containing CuS and CuF2[J]. Wear, 1993, 160(1): 131-138.
doi: 10.1016/0043-1648(93)90414-H
URL
[38]
Huang K J, Zhang J Z, Shi G W, Liu Y M. One-step hydrothermal synjournal of two-dimensional cobalt sulfide for high-performance supercapacitors[J]. Mater. Lett., 2014, 131: 45-48.
doi: 10.1016/j.matlet.2014.05.148
URL
[39]
Liu Y W, Cao X Q, Kong R M, Du G, Asiri A M, Lu Q, Sun X P. Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing[J]. Mater. Chem. B, 2017, 5: 1901-1904.
doi: 10.1039/C6TB02882A
URL
[40]
Chakrabartty S, Karmakar S, Raj C R. An electrocatalytically active nanoflake-like Co9S8-CoSe2 heterostructure for overall water splitting[J]. ACS Appl. Nano Mater., 2020, 3(11): 11326-11334.
doi: 10.1021/acsanm.0c02431
URL
[41]
Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors[J]. Anal. Chim. Acta, 2006, 556(1): 46-57.
doi: 10.1016/j.aca.2005.05.080
URL
[42]
Shu Y, Li B, Chen J Y, Xu Q, Pang H, Hu X Y. Facile synjournal of ultrathin nickel-cobalt phosphate 2D nanosheets with enhanced electrocatalytic activity for glucose oxidation[J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 2360-2367.
doi: 10.1021/acsami.7b17005
URL
[43]
Babu K J, Kumar T R, Yoo D J, Phang S M, Kumar G G. Electrodeposited nickel cobalt sulfide flowerlike architectures on disposable cellulose filter paper for enzyme-free glucose sensor applications[J]. ACS Sustainable Chem. Eng., 2018, 6(12): 16982-16989.
doi: 10.1021/acssuschemeng.8b04340
URL
[44]
Bao L, Li T, Chen S, Peng C, Li L, Xu Q, Chen Y S, Ou E C, Xu W J. 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection[J]. Small, 2017, 13(5): 1602077.
doi: 10.1002/smll.v13.5
URL
[45]
Devasenathipathy R, Karuppiah C, Chen S M, Palanisamy S, Lou B S, Ali M A, Al-Hemaid F M A. A sensitive and selective enzyme-free amperometric glucose biosensor using a composite from multi-walled carbon nanotubes and cobalt phthalocyanine[J]. RSC Adv., 2015, 5(34): 26762-26768.
doi: 10.1039/C4RA17161F
URL
[46]
Lee K K, Loh P Y, Sow C H, Chin W S. CoOOH nano-sheets on cobalt substrate as a non-enzymatic glucose sensor[J]. Electrochem. Comm., 2012, 20: 128-132.
doi: 10.1016/j.elecom.2012.04.012
URL
[47]
Sun Q Q, Wang M, Bao S J, Wang Y C, Gu S. Analysis of cobalt phosphide (CoP) nanorods designed for non-enzyme glucose detection[J]. Analyst, 2016, 141(1): 256-260.
doi: 10.1039/C5AN01928A
URL
Included in
Analytical Chemistry Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons