•  
  •  
 

Corresponding Author

Feng Feng(feng-feng64@263.net)

Abstract

Three-dimensional (3D) nanostructural Flower-like cobalt sulfide (CoS) on flexible self-supporting graphene tape electrode (GTE) with remarkably electrocatalytic activity toward glucose was successfully prepared by electrodeposition. Structural characterizations revealed that the electrodeposited CoS was highly dispersed on GTE as an active material. The fabricated binder-free and self-standing CoS/GTE shows a good linear response in the range of 0.025 ~ 1.0 mmol·L-1, reaching a high glucose sensitivity value of 323.3 μA·(mmol·L -1)-1·cm-2 and a low detection limit of 8.5 μmol·L -1 (S/N = 3). Moreover, the as-prepared sensor was well applied for glucose determination in human serum. Thus, the self-supporting, binder-free, low-cost sensor has good potential as a promising device for practical quantitative analysis of glucose in human serum.

Graphical Abstract

Keywords

flexible electrode, flower-like CoS, electrodeposition, glucose sensor

Publication Date

2022-01-28

Online Available Date

2021-08-03

Revised Date

2021-06-30

Received Date

2021-04-21

References

[1] Rahman M M, Ahammad A J S, Jin J H, Ahn S J, Lee J J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides[J]. Sensors, 2010, 10(5): 4855-4866.
doi: 10.3390/s100504855 URL

[2] Desmet C, Marquette C A, Blum L J, Doumèche B. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells[J]. Biosens. Bioelectron. 2016, 76(SI): 145-163.
doi: 10.1016/j.bios.2015.06.052 URL

[3] Gabriel E F M, Garcia P T, Cardoso T M G, Lopes F M, Martins F T, Coltro W K T. Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices[J]. Analyst, 2016, 141(15): 4749-4756.
doi: 10.1039/c6an00430j pmid: 27272206

[4] Hwang D W, Lee S, Seo M, Chung T D. Recent advances in electrochemical non-enzymatic glucose sensors - a review[J]. Anal. Chim. Acta, 2018, 1033: 1-34.
doi: 10.1016/j.aca.2018.05.051 URL

[5] Qiu H W, Xu S C, Jiang S Z, Li Z, Chen P X, Gao S S, Zhang C, Feng D J. A novel graphene-based tapered optical fiber sensor for glucose detection[J]. Appl. Surf. Sci., 2015, 329: 390-395.
doi: 10.1016/j.apsusc.2014.12.093 URL

[6] Nicholas D, Logan K A, Sheng Y J, Gao J H, Farrell S, Dixon D, Callan B, McHale A P, Callan J F. Rapid paper based colorimetric detection of glucose using a hollow microneedle device[J]. Int. J. Pharm., 2018, 547(1-2): 244-249.
doi: 10.1016/j.ijpharm.2018.06.002 URL

[7] Shoji A, Takahashi Y, Osato S, Sugawara M. An enzyme-modified capillary as a platform for simultaneous fluorometric detection of D-glucose and L-lactate[J]. Pharm. Biomed. Anal., 2019, 163: 1-8.
doi: 10.1016/j.jpba.2018.09.028 URL

[8] Zhu C Z, Yang G H, Li H, Du D, Lin Y H. Electrochemical sensors and biosensors based on nanomaterials and nanostructures[J]. Anal. Chem., 2015, 87(1): 230-249.
doi: 10.1021/ac5039863 URL

[9] Mohamad N R, Marzuki N H C, Buang N A, Huyop F, Wahab R A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes[J]. Biotechnol. Biotechnol. Equip., 2015, 29(2): 205-220.
doi: 10.1080/13102818.2015.1008192 URL

[10] Yu Y Y, Yang Y, Gu H, Zhou T S, Shi G Y. Size-tunable Pt nanoparticles assembled on functionalized ordered mesoporous carbon for the simultaneous and on-line detection of glucose and L-lactate in brain microdialysate[J]. Biosens. Bioelectron., 2013, 41: 511-518.
doi: 10.1016/j.bios.2012.09.055 URL

[11] Ye J S, Chen C W, Lee C L. Pd nanocube as non-enzymatic glucose sensor[J]. Sensor Actuat. B - Chem., 2015, 208: 569-574.
doi: 10.1016/j.snb.2014.11.091 URL

[12] Malhotra S, Tang Y J, Varshney P K. Non-enzymatic glucose sensor based on electrodeposition of platinum particles on polyaniline modified Pt electrode[J]. Anal. Bioanal. Electrochem., 2018, 10(6): 699-715.

[13] Wang R L, Liang X Y, Liu H Y, Cui L, Zhang X Y, Liu C J. Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles[J]. Microchim. Acta, 2018, 185(7): 339.
doi: 10.1007/s00604-018-2866-7 URL

[14] Shim K, Lee W C, Park M S, Shahabuddin M, Yamauchi Y, Hossain M S A, Shim Y B, Kim J H. Au decorated core-shell structured Au@Pt for the glucose oxidation reaction[J]. Sensor Actuat. B - Chem., 2019, 278: 88-96.
doi: 10.1016/j.snb.2018.09.048 URL

[15] Yang J W, Liang X Y, Cui L, Liu H Y, Xie J B, Liu W X. A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects[J]. Biosens. Bioelectron., 2016, 80: 171-174.
doi: 10.1016/j.bios.2016.01.056 URL

[16] Sheng Q, Mei H, Wu H M, Zhang X H, Wang S F. A highly sensitive non-enzymatic glucose sensor based on PtxCo1-x/C nanostructured composites[J]. Sensor Actuat. B - Chem., 2015, 207: 51-58.
doi: 10.1016/j.snb.2014.09.079 URL

[17] Koskun Y, Savk A, Sen B, Sen F. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites[J]. Anal. Chim. Acta, 2018, 1010: 37-43.
doi: 10.1016/j.aca.2018.01.035 URL

[18] Lai C H, Lu M Y, Chen L J. Metal sulfide nanostructures: synjournal, properties and applications in energy conversion and storage[J]. Mater. Chem., 2012, 22(1): 19-30.
doi: 10.1039/C1JM13879K URL

[19] Wang J H, Cui W, Liu Q, Xing Z C, Asiri A M, Sun X P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Adv. Mater., 2016, 28(2): 215-230.
doi: 10.1002/adma.201502696 URL

[20] Wu W Q, Yu B B, Wu H M, Wang S F, Xia Q H, Ding Y. Synjournal of tremella-like CoS and its application in sensing of hydrogen peroxide and glucose[J]. Mater. Sci. Eng. C, 2017, 70: 430-443.
doi: 10.1016/j.msec.2016.08.084 URL

[21] Qu P P, Gong Z N, Cheng H Y, Xiong W, Wu X, Pei P, Zhao R F, Zeng Y, Zhu Z H. Nanoflower-like CoS-decorated 3D porous carbon skeleton derived from rose for a high performance nonenzymatic glucose sensor[J]. RSC Adv., 2015, 5(129): 106661-106667.
doi: 10.1039/C5RA22495K URL

[22] Meng A, Sheng L Y, Zhao K, Li Z J. A controllable honeycomb-like amorphous cobalt sulfide architecture directly grown on the reduced graphene oxide-poly(3,4-ethylenedioxythiophene) composite through electro-deposition for non-enzyme glucose sensing[J]. Mater. Chem. B, 2017, 5(45): 8934-8943.
doi: 10.1039/C7TB02482G URL

[23] Sivakumar M, Sakthivel M, Chen S M. Simple synjournal of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples[J]. J. Colloid Interface Sci., 2017, 490: 719-726.
doi: 10.1016/j.jcis.2016.11.094 URL

[24] Kang Z, Li Y, Cao S Y, Zhang Z H, Guo H J, Wu P W, Zhou L X, Zhang S C, Zhang X M, Zhang Y. 3D graphene foam/ZnO nanorods array mixed-dimensional heterostructure for photoelectrochemical biosensing[J]. Inorg. Chem. Front., 2018, 5(2): 364-369.
doi: 10.1039/C7QI00669A URL

[25] Niu J A, Domenech-Carbo A, Primoa A, Garcia H. Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation[J]. RSC Adv., 2019, 9(1): 99-106.
doi: 10.1039/C8RA08745H URL

[26] Han W J, Ren L, Gong L J, Qi X, Liu Y D, Yang L W, Wei X L, Zhong J X. Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities[J]. ACS Sustainable Chem. Eng., 2014, 2(4): 741-748.
doi: 10.1021/sc400417u URL

[27] Chen D M, Yang J J, Zhu Y, Zhang Y M, Zhu Y F. Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the enhanced photoelectrocatalytic performance[J]. Appl. Catal. B - Environ., 2018, 233: 202-212.
doi: 10.1016/j.apcatb.2018.04.004 URL

[28] Chen D, Zhang H, Liu Y, Li J H. Graphene and its deriva-tives for the development of solar cells, photoelectrochemical, and photocatalytic applications[J]. Energy Environ. Sci., 2013, 6(5): 1362-1387.
doi: 10.1039/c3ee23586f URL

[29] Baig N, Saleh T A. Electrodes modified with 3D graphene composites: a review on methods for preparation, properties and sensing applications[J]. Microchim. Acta, 2018, 185(6): 283.
doi: 10.1007/s00604-018-2809-3 URL

[30] Ito Y, Tanabe Y, Sugawara K, Koshino M, Takahashi T, Tanigaki K., Aokighi H, Chen M W. Three-dimensional porous graphene networks expand graphene-based electronic device applications[J]. Phys. Chem. Chem. Phys., 2018, 20(9): 6024-6033.
doi: 10.1039/C7CP07667C URL

[31] Wang L, Yu J, Zhang Y Y, Yang H, Miao L F, Song Y H. Simple and large-scale strategy to prepare flexible graphene tape electrode[J]. ACS Appl. Mater. Interfaces, 2017, 9(10): 9089-9095.
doi: 10.1021/acsami.6b14624 URL

[32] Lange B, Lovric M, Scholz F. The catalytic action of adsorbed thiocyanate ions and thiourea in the electron transfer from glassy carbon to solid copper(I) selenide and copper(I) sulfide particles[J]. Electroanal. Chem., 1996, 418(1-2): 21-28.
doi: 10.1016/S0022-0728(96)04850-4 URL

[33] Nan K K, Du H F, Su L, Li C M. Directly electrodeposited cobalt sulfide nanosheets as advanced catalyst for oxygen evolution reaction[J]. ChemistrySelect, 2018, 3(25): 7081-7088.
doi: 10.1002/slct.201801482 URL

[34] Gao R, Liu L, Hu Z B, Zhang P, Cao X Z, Wang B Y, Liu X F. The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li-O2 batteries[J]. Mater. Chem. A, 2015, 3(34): 17598-17605.
doi: 10.1039/C5TA03885E URL

[35] Mao M L, Jiang L, Wu L C, Zhang M, Wang T H. The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries[J]. Mater. Chem. A, 2015, 3(25): 13384-13389.
doi: 10.1039/C5TA01501D URL

[36] Shi J H, Li X C, He G H, Zhang L, Li M. Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors[J]. Mater. Chem. A, 2015, 3(41): 20619-20626.
doi: 10.1039/C5TA04464B URL

[37] Bahadur S, Gong D L. The investigation of the action of fillers by XPS studies of the transfer films of PEEK and its composites containing CuS and CuF2[J]. Wear, 1993, 160(1): 131-138.
doi: 10.1016/0043-1648(93)90414-H URL

[38] Huang K J, Zhang J Z, Shi G W, Liu Y M. One-step hydrothermal synjournal of two-dimensional cobalt sulfide for high-performance supercapacitors[J]. Mater. Lett., 2014, 131: 45-48.
doi: 10.1016/j.matlet.2014.05.148 URL

[39] Liu Y W, Cao X Q, Kong R M, Du G, Asiri A M, Lu Q, Sun X P. Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing[J]. Mater. Chem. B, 2017, 5: 1901-1904.
doi: 10.1039/C6TB02882A URL

[40] Chakrabartty S, Karmakar S, Raj C R. An electrocatalytically active nanoflake-like Co9S8-CoSe2 heterostructure for overall water splitting[J]. ACS Appl. Nano Mater., 2020, 3(11): 11326-11334.
doi: 10.1021/acsanm.0c02431 URL

[41] Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors[J]. Anal. Chim. Acta, 2006, 556(1): 46-57.
doi: 10.1016/j.aca.2005.05.080 URL

[42] Shu Y, Li B, Chen J Y, Xu Q, Pang H, Hu X Y. Facile synjournal of ultrathin nickel-cobalt phosphate 2D nanosheets with enhanced electrocatalytic activity for glucose oxidation[J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 2360-2367.
doi: 10.1021/acsami.7b17005 URL

[43] Babu K J, Kumar T R, Yoo D J, Phang S M, Kumar G G. Electrodeposited nickel cobalt sulfide flowerlike architectures on disposable cellulose filter paper for enzyme-free glucose sensor applications[J]. ACS Sustainable Chem. Eng., 2018, 6(12): 16982-16989.
doi: 10.1021/acssuschemeng.8b04340 URL

[44] Bao L, Li T, Chen S, Peng C, Li L, Xu Q, Chen Y S, Ou E C, Xu W J. 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection[J]. Small, 2017, 13(5): 1602077.
doi: 10.1002/smll.v13.5 URL

[45] Devasenathipathy R, Karuppiah C, Chen S M, Palanisamy S, Lou B S, Ali M A, Al-Hemaid F M A. A sensitive and selective enzyme-free amperometric glucose biosensor using a composite from multi-walled carbon nanotubes and cobalt phthalocyanine[J]. RSC Adv., 2015, 5(34): 26762-26768.
doi: 10.1039/C4RA17161F URL

[46] Lee K K, Loh P Y, Sow C H, Chin W S. CoOOH nano-sheets on cobalt substrate as a non-enzymatic glucose sensor[J]. Electrochem. Comm., 2012, 20: 128-132.
doi: 10.1016/j.elecom.2012.04.012 URL

[47] Sun Q Q, Wang M, Bao S J, Wang Y C, Gu S. Analysis of cobalt phosphide (CoP) nanorods designed for non-enzyme glucose detection[J]. Analyst, 2016, 141(1): 256-260.
doi: 10.1039/C5AN01928A URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.