•  
  •  
 

Corresponding Author

Shao-Ping Tong(sptong@zjut.edu.cn)

Abstract

Establishment of an ozone-based advanced oxidation process (AOPs-O3) for effective treatment of acid wastewater is an important and difficult task. The process of ozonation coupled with electrolysis (electrolysis-ozonation, E-O3) has been reported to effectively degrade pollutants in neutral solution. We studied the efficiency of E-O3 for degradation of acetic acid (HAc, an ozone inert chemical) in acid solution and found that E-O3 had high oxidative efficiency at pH less than 3. For example, 52.2% of 100 mg·L-1 HAc could be removed by E-O3 in 120 min at pH 1.0, but only 2.2% and 3.5% by electrolysis and ozonation, respectively. Although the efficiency of E-O3 decreased with the increase of acidity of solution, it still remained relatively high even at pH 0. An aromatic compound of acetophenone could also be effectively degraded by E-O3 at pH 1.0. The results indicate that electrons can transfer from cathode to dissolved ozone or oxygen in acidic solution, thus resulting in generation of reactive species, e.g. hydroxyl radicals. A real acidic wastewater was also effectively pretreated by E-O3. This study provides a promising AOPs-O3 for treatment of acid wastewaters.

Graphical Abstract

Keywords

electrolysis, ozone, acetic acid, efficiency, acid wastewater

Publication Date

2022-01-28

Online Available Date

2021-08-13

Revised Date

2021-05-25

Received Date

2021-04-19

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.